《计算机应用》唯一官方网站

• •    下一篇

基于模型预分配与自蒸馏的个性化联邦学习方法

张珂嘉1,方志军1,2,周南润3,史志才1   

  1. 1. 上海工程技术大学
    2. 东华大学 计算机科学与技术学院
    3. 上海工程技术大学 电子电气工程学院
  • 收稿日期:2025-02-07 修回日期:2025-03-14 发布日期:2025-04-27 出版日期:2025-04-27
  • 通讯作者: 张珂嘉
  • 基金资助:
    科技创新2030-“新一代人工智能”重大项目;上海市科委地方院校能力建设项目

Personalized federated learning method based on model pre-assignment and self-distillation

  • Received:2025-02-07 Revised:2025-03-14 Online:2025-04-27 Published:2025-04-27
  • Supported by:
    he Scientific and Technological Innovation 2030-Major Project of New Generation Artificial Intelligence;the Science & Technology Planning Project of Shanghai

摘要: 联邦学习(FL)是一种分布式机器学习方法,利用分布式数据进行模型训练,但在高度异构的数据分布中表现不佳;个性化联邦学习(PFL)通过为每个客户端提供个性化模型来解决这一问题。然而,以往的PFL算法主要侧重于客户端本地模型的优化,而忽略了服务器端的全局模型,服务器计算资源没有得到充分利用。针对上述局限性,提出基于模型预分配与自蒸馏的个性化联邦学习方法FedPASD。FedPASD从服务器端和客户端两方面入手:在服务器端对下一轮客户端模型有针对性地预先分配,这样不仅能提高模型个性化性能,还能有效利用服务器的计算能力;在客户端,模型经过分层训练,并通过模型自蒸馏微调更好地适应本地数据分布的特点。在CIFAR-10、Fashion-MNIST和CIFAR-100三个数据集上,对FedPASD与FedCP、FedPAC、FedALA等典型算法进行了对比实验,实验结果表明:FedPASD在不同异构设置下的测试准确率都高于FedALA等基准算法,在CIFAR-100数据集上较传统FL算法提升30个百分点,较PFL算法提升2.42到5.92个百分点,在CIFAR-10数据集上最高可达88.54%测试准确率。

关键词: 联邦学习, 数据异构, 个性化联邦学习, 模型预分配, 自蒸馏

Abstract: Federated Learning (FL) is a distributed machine learning method that utilizes distributed data for model training while ensuring data privacy. However, it performs poorly in scenarios with highly heterogeneous data distributions. Personalized Federated Learning (PFL) addresses this challenge by providing personalized models for each client. However, many existing PFL algorithms primarily focus on optimizing client-side local models, while largely overlooking optimization of server-side global models. Consequently, server-side computational resources remain underutilized. To overcome these limitations, FedPASD, a personalized federated learning method based on model pre-assignment and self-distillation, was proposed. FedPASD was operated by addressing both server-side and client-side aspects. On server-side, client models for the next round were strategically identified and pre-assigned, which not only enhanced model personalization but also optimized server computational resources. On client-side, models were trained hierarchically and fine-tuned using self-distillation to better align with local data distribution. Experiments were conducted on three datasets, CIFAR-10, Fashion-MNIST, and CIFAR-100, comparing FedPASD with representative algorithms such as FedCP, FedPAC, and FedALA. Experimental results demonstrate that FedPASD consistently achieves higher test accuracy than that of benchmark algorithms such as FedALA across various data heterogeneity settings. Specifically, FedPASD achieves 30 percentage points higher accuracy than traditional FL algorithms on CIFAR-100 dataset and outperforms existing PFL algorithms by 2.42 to 5.92 percentage points. On CIFAR-10 dataset, FedPASD achieves a maximum accuracy of 88.54%.

Key words: Federated Learning &#40, FL&#41, data heterogeneity, Personalized Federated Learning &#40

中图分类号: