| [1] |
BETKER J, GOH G, JING L, et al. Improving image generation with better captions [EB/OL]. [2025-03-26]. .
|
| [2] |
SAHARIA C, CHAN W, SAXENA S, et al. Photorealistic text-to-image diffusion models with deep language understanding [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 36479-36494.
|
| [3] |
ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 10674-10685.
|
| [4] |
BRUNDAGE M, AVIN S, CLARK J, et al. The malicious use of artificial intelligence: forecasting, prevention, and mitigation [EB/OL]. [2025-03-26]. .
|
| [5] |
NIRKIN Y, WOLF L, KELLER Y, et al. Deepfake detection based on discrepancies between faces and their context [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6111-6121.
|
| [6] |
GUARNERA L, GIUDICE O, BATTIATO S. DeepFake detection by analyzing convolutional traces [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 2841-2850.
|
| [7] |
MARRA F, GRAGNANIELLO D, VERDOLIVA L, et al. Do GANs leave artificial fingerprints? [C]// Proceedings of the 2019 IEEE Conference on Multimedia Information Processing and Retrieval. Piscataway: IEEE, 2019: 506-511.
|
| [8] |
YU N, DAVIS L S, FRITZ M. Attributing fake images to GANs: learning and analyzing GAN fingerprints [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 7555-7565.
|
| [9] |
FRANK J, EISENHOFER T, SCHÖNHERR L, et al. Leveraging frequency analysis for deep fake image recognition [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 3247-3258.
|
| [10] |
ZHANG X, KARAMAN S, CHANG S F. Detecting and simulating artifacts in GAN fake images [C]// Proceedings of the 2019 IEEE International Workshop on Information Forensics and Security. Piscataway: IEEE, 2019: 1-6.
|
| [11] |
SEOW J W, LIM M K, PHAN R C W, et al. A comprehensive overview of Deepfake: generation, detection, datasets, and opportunities [J]. Neurocomputing, 2022, 513: 351-371.
|
| [12] |
ZHAO Y, PANG T, DU C, et al. A recipe for watermarking diffusion models [EB/OL]. [2025-03-26]. .
|
| [13] |
YU N, SKRIPNIUK V, ABDELNABI S, et al. Artificial fingerprinting for generative models: rooting deepfake attribution in training data [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 14428-14437.
|
| [14] |
COX I J, MILLER M W, BLOOM J A, et al. Digital watermarking and steganography [M]. 2nd ed. San Francisco: Morgan Kaufmann, 2008.
|
| [15] |
ZHU J, KAPLAN R, JOHNSON J, et al. HiDDeN: hiding data with deep networks [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11219. Cham: Springer, 2018: 682-697.
|
| [16] |
KISHORE V, CHEN X, WANG Y, et al. Fixed neural network steganography: train the images, not the network [EB/OL]. [2025-03-26]. .
|
| [17] |
FERNANDEZ P, SABLAYROLLES A, FURON T, et al. Watermarking images in self-supervised latent spaces [C]// Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 3054-3058.
|
| [18] |
FERNANDEZ P, COUAIRON G, JÉGOU H, et al. The Stable Signature: rooting watermarks in latent diffusion models [C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 22409-22420.
|
| [19] |
WEN Y, KIRCHENBAUER J, GEIPING J, et al. Tree-ring watermarks: fingerprints for diffusion images that are invisible and robust [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 58047-58063.
|
| [20] |
REZAEI A, AKBARI M, ALVAR S R, et al. LaWa: using latent space for in-generation image watermarking [C]// Proceedings of the 2024 European Conference on Computer Vision, LNCS 15147. Cham: Springer, 2025: 118-136.
|
| [21] |
XIONG C, QIN C, FENG G, et al. Flexible and secure watermarking for latent diffusion model [C]// Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 1668-1676.
|
| [22] |
FENG W, ZHOU W, HE J, et al. AquaLoRA: toward white-box protection for customized stable diffusion models via watermark LoRA [C]// Proceedings of the 41st International Conference on Machine Learning. New York: JMLR.org, 2024: 13423-13444.
|
| [23] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
|
| [24] |
CZOLBE S, KRAUSE O, COX I, et al. A loss function for generative neural networks based on Watson's perceptual model [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 2051-2061.
|
| [25] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014: 740-755.
|
| [26] |
LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization [EB/OL]. [2025-03-26]. .
|
| [27] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
|
| [28] |
HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6629-6640.
|
| [29] |
LI X. DiffWA: diffusion models for watermark attack [C]// Proceedings of the 2023 International Conference on Integrated Intelligence and Communication Systems. Piscataway: IEEE, 2023: 1-8.
|
| [30] |
MARCEL S, RODRIGUEZ Y. Torchvision the machine-vision package of Torch [C]// Proceedings of the 18th ACM International Conference on Multimedia. New York: ACM, 2010: 1485-1488.
|