《计算机应用》唯一官方网站

• •    下一篇

面向跨相机鸟瞰图视角道路对齐的地平线检测方法

王伟1,刘佳欣2,向婉妮2,崔华1,李阳光2   

  1. 1. 长安大学
    2. 长安大学信息工程学院
  • 收稿日期:2025-07-04 修回日期:2025-09-23 发布日期:2025-10-13 出版日期:2025-10-13
  • 通讯作者: 刘佳欣
  • 基金资助:
    国家自然科学基金面上项目:Wasserstein空间上类距离函数的弱KAM理论及应用

Horizon detection method for cross-camera bird’s-eye-view road alignment

  • Received:2025-07-04 Revised:2025-09-23 Online:2025-10-13 Published:2025-10-13

摘要: 摘 要: 针对高速公路广泛部署的监控相机单相机视野有限,难以实现大范围连续感知的问题,提出跨相机鸟瞰图视角(BEV)的道路几何对齐任务,以提升场景一致性与完整性。然而,由于多相机图像间存在视角差异与结构错位,几何对齐过程仍面临较大挑战。地平线作为全局几何先验能够统一视角差异,针对其检测易受遮挡和环境干扰,制约对齐精度的问题,提出面向跨相机鸟瞰图视角道路对齐中的路侧地平线检测方法(RoadHoriNet)。首先,通过透视变换与包围框裁剪进行数据增强;其次,引入钻石空间表示缓解消失点学习不稳定问题;再次,结合感受野注意力卷积(RFAConv)与动态上采样(DySample)提升特征表达与重建精度;最后,设计几何一致性损失函数,加强地平线检测的方向与位置约束。在公开数据集BrnoCompSpeed上进行的实验证明,RoadHoriNet 在像素误差(5.166%)和角度误差(0.0325°)方面表现最佳,检测精度达到 94.834%。与自适应地平线检测方法相比,像素误差减少了 4.815 个百分点,角度误差降低了 0.0194°;在跨相机BEV视角的道路几何对齐任务中,整体对齐精度高达99.129%,验证了该方法在交通环境中的实用性与推广潜力。本研究所提出的地平线检测方法能够为相机姿态归一化与坐标统一提供稳定的几何先验,有效提升跨相机BEV道路几何对齐的精度与鲁棒性。

关键词: 地平线检测, 钻石空间, 几何一致性损失, 多相机对齐, 感受野注意力卷积(RFAConv), 动态上采样(DySample)

Abstract: Abstract: To address the problem that the limited field of view of widely deployed highway surveillance cameras makes it difficult to achieve large-scale continuous perception, a cross-camera Bird’s-Eye-View (BEV) road geometric alignment task was proposed to improve scene consistency and completeness. However, this task faces challenges due to the perspective differences and structural misalignments among multiple cameras. The horizon, as a global geometric prior, can unify these perspective differences, but its detection is easily affected by occlusion and environmental interference, which becomes a key factor limiting alignment accuracy. To solve this problem, a horizon detection method for cross-camera BEV road alignment, named RoadHoriNet (Road Horizon detection Network), was proposed as a key technology. First, perspective transformation and bounding box cropping were applied for data augmentation. Then, a diamond space representation was introduced to alleviate instability in vanishing-point learning. Next, Receptive Field Attention Convolution (RFAConv) and Dynamic Upsampling (DySample) were used to enhance feature representation and reconstruction accuracy. Finally, a geometric consistency loss function was designed to constrain the orientation and position of the detected horizon.Experimental results demonstrated that RoadHoriNet achieved a pixel error of 5.166%, an angle error of 0.0325°, and a detection accuracy of 94.834% on the BrnoCompSpeed dataset, reducing the pixel error by 4.815 percentage points and the angle error by 0.0194° compared with the adaptive horizon detection method. In the cross-camera BEV road alignment task, the overall alignment accuracy reached 99.129%.It is concluded that RoadHoriNet provides a stable geometric prior for camera pose normalization and multi-camera coordinate unification, significantly improving the accuracy and robustness of cross-camera BEV road geometric alignment.

Key words: horizon detection, diamond space, geometric consistency loss, multi-camera alignment, Receptive Field Attention Convolution (RFAConv), Dynamic Upsampling(DySample)

中图分类号: