《计算机应用》唯一官方网站

• •    下一篇

基于多策略对比学习和自适应标签平滑的文本-ID序列推荐模型

刘珈铭1,艾芳菊2   

  1. 1. 湖北大学计算机学院
    2. 湖北大学计算机与信息工程学院
  • 收稿日期:2025-08-14 修回日期:2025-10-31 发布日期:2025-12-22 出版日期:2025-12-22
  • 通讯作者: 刘珈铭

Text-ID sequential recommendation model via multi-strategy contrastive learning and adaptive label smoothing

  • Received:2025-08-14 Revised:2025-10-31 Online:2025-12-22 Published:2025-12-22

摘要: 序列推荐系统在捕捉用户兴趣演变方面取得了显著进展,侧信息的有效利用发挥了关键作用,例如将项目的相关文本数据与序列推荐中项目ID在变换后的域空间进行有效的融合,再将这种文本与ID的语义融合用于序列推荐以提升推荐性能。针对现有模型面临用户行为复杂性、异构信息融合后泛化能力有限、数据稀疏性等不足,提出了基于多策略对比学习和自适应标签平滑的文本-ID序列推荐模型MCLALS(Multi-strategy Contrastive Learning and Adaptive Label Smoothing)。该模型首先通过领域专家融合网络处理文本表示,动态整合不同特征子空间的知识;然后将处理后的文本表示与ID表示进行序列级语义融合,通过频域变换捕捉异构信息间的深层交互;接着在融合后的高级表示上应用多策略对比学习,通过多种互补的数据增强策略创建多样化增强表示,有效缓解数据稀疏性;最后采用自适应标签平滑技术优化训练目标,提高模型对噪声和长尾分布的鲁棒性。在Food、Office和OR三个公开基准数据集上对MCLALS模型进行了系统的性能评估。实验结果表明,所提模型在整体性能上优于包括SASRec(Self-attentive sequential recommendation)、TedRec(Text-ID Semantic Fusion for Sequential Recommendation)在内的多个对比模型。其中,在OR数据集上的NDCG@10指标相比最优基线模型至少提升6.69%,验证了MCLALS模型的有效性。

关键词: 序列推荐, 文本-ID融合, 混合专家系统, 多策略对比学习, 自适应标签平滑

Abstract: Significant progress has been made in sequential recommendation systems for capturing the evolution of user interests, where the effective use of side information plays a crucial role. For example, item-related textual data can be effectively fused with item IDs in a transformed feature space, and this text-ID semantic fusion can then be leveraged to enhance recommendation performance. However, existing models still suffer from limitations such as the complexity of user behaviors, limited generalization after heterogeneous information fusion, and data sparsity. This study proposes a text–ID sequential recommendation model named MCLALS (Multi-strategy Contrastive Learning and Adaptive Label Smoothing). The model first employed a domain-expert fusion network to process textual representations and dynamically integrate knowledge from different feature subspaces. Then, the processed text and ID representations were semantically fused at the sequence level through frequency-domain transformation to capture deep interactions among heterogeneous information. On the fused high-level representations, multi-strategy contrastive learning was applied to generate diverse augmented representations using multiple complementary data augmentation strategies, effectively alleviating data sparsity. Finally, adaptive label smoothing was adopted to optimize the training objective, enhancing the model’s robustness to noise and long-tail distributions. The MCLALS model was systematically evaluated on three public benchmark datasets: Food, Office, and OR. Experimental results show that the proposed model outperforms several baseline models, including SASRec(Self-attentive sequential recommendation) and TedRec(Text-ID Semantic Fusion for Sequential Recommendation), in overall performance. In particular, on the OR dataset, the MCLALS model achieves at least a 6.69% improvement in NDCG@10 compared to the best baseline model, thereby verifying its effectiveness.

Key words: sequential recommendation, text-ID fusion, mixture-of-experts system, multi-strategy contrastive learning, adaptive label smoothing

中图分类号: