《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (1): 106-114.DOI: 10.11772/j.issn.1001-9081.2024010126

• 数据科学与技术 • 上一篇    下一篇

基于多层次图对比学习的序列推荐模型

余肖生1,2(), 王智鑫1,2   

  1. 1.湖北省水电工程智能视觉监测重点实验室(三峡大学),湖北 宜昌 443002
    2.三峡大学 计算机与信息学院,湖北 宜昌 443002
  • 收稿日期:2024-02-05 修回日期:2024-03-25 接受日期:2024-03-25 发布日期:2024-05-09 出版日期:2025-01-10
  • 通讯作者: 余肖生,王智鑫
  • 作者简介:余肖生(1973—),男,湖北监利人,副教授,博士,CCF会员,主要研究方向:自然语言处理、数据挖掘; yuxiaosheng_2005@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFC0802500)

Sequential recommendation model based on multi-level graph contrastive learning

Xiaosheng YU1,2(), Zhixin WANG1,2   

  1. 1.Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering (China Three Gorges University),Yichang Hubei 443002,China
    2.College of Computer and Information,China Three Gorges University,Yichang Hubei 443002,China
  • Received:2024-02-05 Revised:2024-03-25 Accepted:2024-03-25 Online:2024-05-09 Published:2025-01-10
  • Contact: Xiaosheng YU, Zhixin WANG
  • About author:WANG Zhixin, born in 1999, M. S. candidate. His research interests include recommendation algorithm, data mining.
  • Supported by:
    National Key Research and Development Program of China(2016YFC0802500)

摘要:

针对现有的基于对比学习的序列推荐模型只考虑了项目和项目或者序列和序列这一个层级的表示学习,而没有办法学习到精细的、易于区分的用户与项目表示的问题,提出一种基于多层次图对比学习的序列推荐(MLGCL-SR)模型。首先,根据用户点击项目的顺序构建项目转移图,并对它进行嵌入表示;其次,利用优化后的双向门控图神经网络(BI-GGNN)在嵌入的项目转移图上进行用户的表示学习;最后,对主要推荐预测任务通过交叉熵损失函数进行参数更新,并使用多层次对比学习任务在嵌入层、节点层、序列层三个层次辅助推荐预测任务进行参数更新,其中在嵌入层和节点层辅助推荐预测任务进行更好的项目表示,而在序列层辅助推荐预测任务进行更好的用户表示。在3个基准数据集Sports、Beauty、Toys上的实验结果表明,相较于对比的最优模型MCLRec (Meta-optimized Contrastive Learning for sequential Recommendation),MLGCL-SR模型在命中率(HR)和归一化折损累计增益(NDCG)指标上有了显著的提升,在能较好反映推荐效果的NDCG@10指标上分别提升了14.2%、19.1%和23.1%,验证了模型的有效性。

关键词: 推荐系统, 序列推荐, 对比学习, 双向门控图神经网络

Abstract:

Aiming at the problem that current sequential recommendation models based on contrastive learning only consider representation learning at the level of items and items or sequences and sequences, and are incapable of capturing fined and distinguishable user representations and item representations, a Multi-Level Graph Contrastive Learning based Sequential Recommendation (MLGCL-SR) model was proposed. Firstly, the item transition graph was constructed on the basis of sequential order of user-clicked items and performed to embedded representation. Secondly, user representation learning was conducted on the embedded item transition graph using an optimized Bidirectional Gated Graph Neural Network (BI-GGNN). Finally, parameter updates for primary recommendation prediction task were performed through a cross-entropy loss function, and the multi-level contrastive learning tasks were used to assist in parameter updates of recommendation prediction tasks at embedding layer, node layer, and sequential layer; specifically, on the embedding layer and node layer for better item representations in recommendation prediction tasks, while on the sequential layer for better user representations in recommendation prediction tasks. Experimental results on three benchmark datasets, Sports, Beauty, and Toys, demonstrated that compared to the optimal baseline model MCLRec (Meta-optimized Contrastive Learning for sequential Recommendation), MLGCL-SR model has significant improvements on Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG) metrics, and increases on NDCG@10, the metric better reflecting recommendation effectiveness by 14.2%, 19.1%, and 23.1% respectively, validating the effectiveness of the model.

Key words: recommendation system, sequential recommendation, contrastive learning, Bidirectional Gated Graph Neural Network (BI-GGNN)

中图分类号: