《计算机应用》唯一官方网站

• •    下一篇

基于时空注意力与解耦动态残差图卷积的交通预测

杨国梁,李卫军,熊章友,朱晓娟,马馨瑜   

  1. 北方民族大学
  • 收稿日期:2025-09-08 修回日期:2025-11-11 发布日期:2025-12-09 出版日期:2025-12-09
  • 通讯作者: 李卫军
  • 基金资助:
    宁夏自然科学基金;宁夏高等学校科学研究项目;银川市科技支撑项目;北方民族大学研究生创新项目

Traffic flow prediction based on spatio-temporal attention with decoupled dynamic residual map convolution

  • Received:2025-09-08 Revised:2025-11-11 Online:2025-12-09 Published:2025-12-09

摘要: 摘 要: 针对现有交通流预测模型依赖预定义静态图结构、难以捕捉动态时空依赖关系的问题,提出一种基于时空注意力与解耦动态残差图卷积的交通流预测模型(STAR-DDRGC)。该模型通过动态图卷积循环网络(DGCRN)自适应生成节点关联关系,结合门控循环单元捕捉时序特征;引入时空注意力模块(ST-Attention Block)建模动态空间和非线性时间相关性;利用解耦模块将交通流分解为独立模式表示,并通过残差图卷积模块处理多模式特征。在PEMS03、PEMS04和PEMS08数据集上的实验表明,STAR-DDRGC的预测性能显著优于现有的18种基准模型,MAE、RMSE和MAPE指标平均分别降低12.7%、10.3%和14.2%,特别在PEMS08数据集上MAE最高降低21.33%。消融实验验证了各模块的有效性,特征增强层和时空注意力模块分别使MAE降低0.53和0.61。计算成本分析显示,STAR-DDRGC参数量为527,534,训练时间较STGODE减少63.23%,在保证预测精度的同时提升了效率。动态图生成与多模块协同设计能够有效建模交通流的复杂时空依赖性,为智能交通系统提供高精度、低延迟的预测解决方案。

关键词: 动态图卷积网络, 时空注意力机制, 交通流预测, 残差图卷积, 解耦模块, 时空依赖性

Abstract: Abstract: Aiming at the problem that existing traffic flow prediction models rely on predefined static graph structures and are difficult to capture dynamic spatio-temporal dependencies, a traffic flow prediction model based on spatio-temporal attention and decoupled dynamic residual graph convolution is proposed. The model adaptively generates node association relations through Dynamic Graph Convolutional Recurrent Network, and captures temporal features in combination with gated recurrent unit. The Spatio-Temporal Attention Block is introduced to model dynamic spatial and nonlinear temporal correlations. The decoupling module is utilized to decompose the traffic flow into independent mode representations, and the multi-mode features are processed by the residual graph convolution module. Experiments on the PEMS03, PEMS04, and PEMS08 datasets show that the prediction performance of STAR-DDRGC significantly outperforms that of the existing 18 benchmark models, with an average reduction of MAE, RMSE, and MAPE metrics of 12.7%, 10.3%, and 14.2%, respectively, and a maximum reduction of MAE of 21.33% especially on the PEMS08 dataset. The ablation experiments verify the effectiveness of each module, and the feature enhancement layer and spatio-temporal attention module reduce the MAE by 0.53 and 0.61, respectively.The computational cost analysis reveals that the number of STAR-DDRGC parameters is 527,534, and the training time is reduced by 63.23% compared with that of STGODE, which ensures the prediction accuracy and improves the efficiency at the same time. Dynamic graph generation and multi-module co-design can effectively model the complex spatio-temporal dependencies of traffic flow and provide high-precision and low-latency prediction solutions for intelligent transportation systems.

Key words: dynamic graph convolutional networks, spatio-temporal attention mechanism, traffic flow prediction, residual graph convolution, decoupling module, spatio-temporal dependence

中图分类号: