《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (1): 258-264.DOI: 10.11772/j.issn.1001-9081.2021010080
• 前沿与综合应用 • 上一篇
收稿日期:
2021-01-15
修回日期:
2021-04-20
接受日期:
2021-04-29
发布日期:
2021-05-12
出版日期:
2022-01-10
通讯作者:
施佺
作者简介:
包银鑫(1996—),男,江苏淮安人,博士研究生,主要研究方向:智能信息处理基金资助:
Yinxin BAO1, Yang CAO1,2, Quan SHI1,2()
Received:
2021-01-15
Revised:
2021-04-20
Accepted:
2021-04-29
Online:
2021-05-12
Published:
2022-01-10
Contact:
Quan SHI
About author:
BAO Yinxin, born in 1996, Ph. D. candidate. His research interests include intelligent information processing.Supported by:
摘要:
城市路网交通流预测受到历史交通流和相邻路口交通流的影响,具有复杂的时空关联性。针对传统时空残差模型缺乏对交通流数据进行相关性分析、捕获微小变化而容易忽略长期时间特征等问题,提出一种基于改进时空残差卷积神经网络(CNN)的城市路网短时交通流预测模型。该模型将原始交通流数据转化成交通栅格数据,利用皮尔逊相关系数(PCC)对交通栅格数据进行相关性分析,确定相关性高的周期序列和邻近序列;同时,建立周期序列模型和邻近序列模型,并引入长短时记忆(LSTM)网络作为混合模型提取时间特征以及捕获两种序列的长期时间特征。利用成都市出租车数据集对模型进行验证,结果表明该模型预测结果优于LSTM、CNN和传统残差模型等基准模型,以均方根误差(RMSE)为评价指标时,所提模型将测试集中交通路网的平均预测精度分别提高了25.6%、13.3%和3.2%。
中图分类号:
包银鑫, 曹阳, 施佺. 基于改进时空残差卷积神经网络的城市路网短时交通流预测[J]. 计算机应用, 2022, 42(1): 258-264.
Yinxin BAO, Yang CAO, Quan SHI. Improved spatio-temporal residual convolutional neural network for urban road network short-term traffic flow prediction[J]. Journal of Computer Applications, 2022, 42(1): 258-264.
数据集 | 成都市出租车数据 |
---|---|
地点 | 中国四川省成都市 |
时间 | 2014年8月3日到2014年8月30日 |
栅格面积 | 648 km2 |
区域经度(最小值) | 103.945 689 |
区域经度(最大值) | 104.204 976 |
区域纬度(最小值) | 30.786 707 |
区域纬度(最大值) | 30.585 958 |
时间间隔 | 5 min |
栅格数据尺寸 | 24×24 |
栅格数据数量 | 6 048 |
表1 数据集参数
Tab. 1 Dataset parameters
数据集 | 成都市出租车数据 |
---|---|
地点 | 中国四川省成都市 |
时间 | 2014年8月3日到2014年8月30日 |
栅格面积 | 648 km2 |
区域经度(最小值) | 103.945 689 |
区域经度(最大值) | 104.204 976 |
区域纬度(最小值) | 30.786 707 |
区域纬度(最大值) | 30.585 958 |
时间间隔 | 5 min |
栅格数据尺寸 | 24×24 |
栅格数据数量 | 6 048 |
参数 | 取值 |
---|---|
输入尺寸 | [BATCH_SIZE,1,24,24] |
残差单元数量 | 3 |
卷积核尺寸 | 3×3 |
卷积核步长 | 1 |
卷积补零圈数 | 1 |
LSTM输入层维度 | 1×576 |
LSTM隐藏层层数 | 12 |
LSTM输出层维度 | 1×576 |
激活函数 | 残差单元:ReLU,其余为Sigmoid |
表2 改进时空残差卷积神经网络模型结构参数
Tab. 2 Structural parameters of improved spatio-temporal residual convolutional neural network model
参数 | 取值 |
---|---|
输入尺寸 | [BATCH_SIZE,1,24,24] |
残差单元数量 | 3 |
卷积核尺寸 | 3×3 |
卷积核步长 | 1 |
卷积补零圈数 | 1 |
LSTM输入层维度 | 1×576 |
LSTM隐藏层层数 | 12 |
LSTM输出层维度 | 1×576 |
激活函数 | 残差单元:ReLU,其余为Sigmoid |
模型类别 | 成都市出租车数据(测试集) | |
---|---|---|
RMSE(平均) | MAE(平均) | |
LSTM(路网) | 9.282 | 5.444 |
CNN(路网) | 7.972 | 3.588 |
ST-ResNet(路网) | 7.139 | 4.188 |
改进ST-ResNet(路网) | 6.909 | 3.110 |
表3 模型性能比较结果
Tab. 3 Model performance comparison results
模型类别 | 成都市出租车数据(测试集) | |
---|---|---|
RMSE(平均) | MAE(平均) | |
LSTM(路网) | 9.282 | 5.444 |
CNN(路网) | 7.972 | 3.588 |
ST-ResNet(路网) | 7.139 | 4.188 |
改进ST-ResNet(路网) | 6.909 | 3.110 |
1 | VLAHOGIANNI E I, KARLARLAFTIS M G, GOLIAS J C. Short-term traffic forecasting: where we are and where we’re going[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 3-19. 10.1016/j.trc.2014.01.005 |
2 | ZHANG J P, WANG F Y, WANG K F, et al. Data-driven intelligent transportation systems: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1624-1639. 10.1109/tits.2011.2158001 |
3 | OH S, BYON Y J, JANG K, et al. Short-term travel-time prediction on highway: a review of the data-driven approach[J]. Transport Reviews, 2015, 35(1): 4-32. 10.1080/01441647.2014.992496 |
4 | 陈航,陈玉敏,吴钱娇,等. 基于周相似性的短时交通流预测方法研究[J]. 测绘通报, 2015(S2): 27-31. |
CHEN H, CHEN Y M, WU Q J, et al. Research on methods of traffic flow forecasting based on weekly similarity[J]. Bulletin of Surveying and Mapping, 2015(S2): 27-31. | |
5 | KUMAR S V. Traffic flow prediction using Kalman filtering technique[J]. Procedia Engineering, 2017, 187: 582-587. 10.1016/j.proeng.2017.04.417 |
6 | FENG X X, LING X Y, ZHENG H F, et al. Adaptive multi-kernel SVM with spatial-temporal correlation for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2001-2013. 10.1109/tits.2018.2854913 |
7 | 陈丹,胡明华,张洪海,等. 基于贝叶斯估计的短时空域扇区交通流量预测[J]. 西南交通大学学报, 2016, 51(4): 807-814. 10.3969/j.issn.0258-2724.2016.04.028 |
CHEN D, HU M H, ZHANG H H, et al. Short-term traffic flow prediction of airspace sectors based on Bayesian estimation theory[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 807-814. 10.3969/j.issn.0258-2724.2016.04.028 | |
8 | 罗向龙,李丹阳,杨彧,等. 基于 KNN-LSTM 的短时交通流预测[J]. 北京工业大学学报, 2018, 44(12): 1521-1527. 10.11936/bjutxb2018030029 |
LUO X L, LI D Y, YANG Y, et al. Short-term traffic flow prediction based on KNN-LSTM[J]. Journal of Beijing University of Technology, 2018, 44(12): 1521-1527. 10.11936/bjutxb2018030029 | |
9 | KARLAFTIS M G, VLAHOGIANNI E I. Statistical methods versus neural networks in transportation research: differences, similarities and some insights[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(3): 387-399. 10.1016/j.trc.2010.10.004 |
10 | LV Y S, DUAN Y J, KANG W W, et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865-873. 10.1109/tits.2015.2399852 |
11 | POLSON N G, SOKOLOV V O. Deep learning for short-term traffic flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2017, 79: 1-17. 10.1016/j.trc.2017.02.024 |
12 | HUANG W H, SONG G J, HONG H K, et al. Deep architecture for traffic flow prediction: deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 2191-2201. 10.1109/tits.2014.2311123 |
13 | ABDULHAI B, PORWAL H, RECKER W. Short-term traffic flow prediction using neuro-genetic algorithms[J]. Journal of Intelligent Transportation Systems, 2002, 7(1): 3-41. 10.1080/10248070212011 |
14 | 高红民,曹雪莹,杨耀,等. 基于CNN的双边融合网络在高光谱图像分类中的应用[J]. 通信学报, 2020, 41(11): 132-140. 10.11959/j.issn.1000-436x.2020238 |
GAO H M, CAO X Y, YANG Y, et al. Application of bilateral fusion model based on CNN in hyperspectral image classification[J]. Journal on Communications, 2020, 41(11): 132-140. 10.11959/j.issn.1000-436x.2020238 | |
15 | MA X L, DAI Z, HE Z B, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): No.818. 10.3390/s17040818 |
16 | 王祥雪,许伦辉. 基于深度学习的短时交通流预测研究[J]. 交通运输系统工程与信息, 2018, 18(1): 81-88. 10.16097/j.cnki.1009-6744.2018.01.012 |
WANG X X, XU L H. Short-term traffic flow prediction based on deep learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1): 81-88. 10.16097/j.cnki.1009-6744.2018.01.012 | |
17 | 王志建,李达标,崔夏,等. 基于LSTM神经网络的降雨天旅行时间预测研究[J]. 交通运输系统工程与信息, 2020, 20(1): 137-144. |
WANG Z J, LI D B, CUI X, et al. Travel time prediction based on LSTM neural network in precipitation[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 137-144. | |
18 | 于德新,邱实,周户星,等. 基于GRU-RNN模型的交叉口短时交通流预测研究[J]. 公路工程, 2020, 45(4): 109-114. 10.19782/j.cnki.1674-0610.2020.04.018 |
YU D X, QIU S, ZHOU H X, et al. Research on short-term traffic flow prediction of intersections based on GRU-RNN model[J]. Highway Engineering, 2020, 45(4): 109-114. 10.19782/j.cnki.1674-0610.2020.04.018 | |
19 | SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 802-810. |
20 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
21 | ZHANG J B, ZHENG Y, QI D K, et al. Predicting citywide crowd flows using deep spatio-temporal residual networks[J]. Artificial Intelligence, 2018, 259: 147-166. 10.1016/j.artint.2018.03.002 |
22 | GUO S N, LIN Y F, LI S J, et al. Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3913-3926. 10.1109/tits.2019.2906365 |
23 | GUO G, ZHANG T Q. A residual spatio-temporal architecture for travel demand forecasting[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: No.102639. 10.1016/j.trc.2020.102639 |
24 | 赵建立,石敬诗,孙秋霞,等. 基于混合深度学习的地铁站进出客流量短时预测[J]. 交通运输系统工程与信息, 2020, 20(5): 128-134. 10.1155/2020/4656435 |
ZHAO J L, SHI J S, SUN Q X, et al. Short-time inflow and outflow prediction of metro stations based on hybrid deep learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(5): 128-134. 10.1155/2020/4656435 | |
25 | ZHENG C P, FAN X L, WEN C L, et al. DeepSTD: mining spatio-temporal disturbances of multiple context factors for citywide traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3744-3755. 10.1109/tits.2019.2932785 |
26 | 百度网盘. 2014年四川成都的出租车数据[DS/OL]. (2020-10-22) [2020-11-03]., 提取码: clsj. (Baidu Netdisk. Taxi data in Chengdu, Sichuan Province in 2014[DS/OL]. (2020-10-22) [2020-11-03]., Extraction code: clsj.) |
[1] | 李恒鑫, 常侃, 谭宇飞, 凌铭阳, 覃团发. 应用通道间相关性及增强信息蒸馏的彩色图像去马赛克网络[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 245-251. |
[2] | 宋中山, 梁家锐, 郑禄, 刘振宇, 帖军. 基于双向门控尺度特征融合的遥感场景分类[J]. 计算机应用, 2021, 41(9): 2726-2735. |
[3] | 李康康, 张静. 基于注意力机制的多层次编码和解码的图像描述模型[J]. 计算机应用, 2021, 41(9): 2504-2509. |
[4] | 张永斌, 常文欣, 孙连山, 张航. 基于字典的域名生成算法生成域名的检测方法[J]. 计算机应用, 2021, 41(9): 2609-2614. |
[5] | 赵宏, 孔东一. 图像特征注意力与自适应注意力融合的图像内容中文描述[J]. 计算机应用, 2021, 41(9): 2496-2503. |
[6] | 徐江浪, 李林燕, 万新军, 胡伏原. 结合目标检测的室内场景识别方法[J]. 计算机应用, 2021, 41(9): 2720-2725. |
[7] | 牟长宁, 王海鹏, 周丕宇, 侯鑫行. 基于图卷积神经网络的串联质谱从头测序[J]. 计算机应用, 2021, 41(9): 2773-2779. |
[8] | 王贺兵, 张春梅. 基于非对称卷积-压缩激发-次代残差网络的人脸关键点检测[J]. 计算机应用, 2021, 41(9): 2741-2747. |
[9] | 曾祥银, 郑伯川, 刘丹. 基于深度卷积神经网络和聚类的左右轨道线检测[J]. 计算机应用, 2021, 41(8): 2324-2329. |
[10] | 曹玉红, 徐海, 刘荪傲, 王紫霄, 李宏亮. 基于深度学习的医学影像分割研究综述[J]. 《计算机应用》唯一官方网站, 2021, 41(8): 2273-2287. |
[11] | 丁尹, 桑楠, 李晓瑜, 吴飞舟. 基于循环神经网络的电信行业容量数据预测方法[J]. 计算机应用, 2021, 41(8): 2373-2378. |
[12] | 秦斌斌, 彭良康, 卢向明, 钱江波. 司机分心驾驶检测研究进展[J]. 计算机应用, 2021, 41(8): 2330-2337. |
[13] | 黄程程, 董霄霄, 李钊. 基于二维Winograd算法的深流水线5×5卷积方法[J]. 计算机应用, 2021, 41(8): 2258-2264. |
[14] | 祝承, 赵晓琦, 赵丽萍, 焦玉宏, 朱亚飞, 陈建英, 周伟, 谭颖. 基于谱聚类半监督特征选择的功能磁共振成像数据分类[J]. 计算机应用, 2021, 41(8): 2288-2293. |
[15] | 吴则举, 焦翠娟, 陈亮. 基于改进Faster R-CNN的轮胎缺陷检测方法[J]. 计算机应用, 2021, 41(7): 1939-1946. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||