| [1] 马景义,张辛连,苏治,等.广义线性模型组LASSO路径算法[J].中国科学:数学,2015,45(10):1725-1738.(MA J Y, ZHANG X L, SU Z, et al. An algorithm for the estimation of regularization paths of generalized linear models with group LASSO penalty[J]. SCIENTIA SINICA Mathematica, 2015, 45(10):1725-1738.) [2] FRANK I E, FRIEDMAN J H. A statistical view of some chemometrics regression tools[J]. Technometrics, 1993, 35(2):109-135.
 [3] BREIMAN L. Better subset regression using the nonnegative garrote[J]. Technometrics, 1995, 37(4):373-384.
 [4] TIBSHIRANI R. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1996, 58(1):267-288.
 [5] EFRON B, HASTIE T, JOHNSTONE I, et al. Least angle regression[J]. The Annals of Statistics, 2004, 32(2):407-499.
 [6] 李锋,盖玉洁,卢一强.测量误差模型的自适应LASSO变量选择方法研究[J].中国科学:数学,2014,44(9):983-1006.(LI F, GAI Y J, LU Y Q. Adaptive LASSO for measurement error models[J]. SCIENTIA SINICA Mathematica, 2014, 44(9):983-1006.)
 [7] MARAHIEL M A. Introducing Lasso peptides as a molecular scaffold for drug design[J]. Journal of Peptide Science, 2014, 20:S27-S28.
 [8] SHAHBEIG S, POURGHASSEM H. Fast and automatic algorithm for optic disc extraction in retinal images using principle-component-analysis-based preprocessing and curvelet transform[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2013, 30(1):13-21.
 [9] WANG J, WANG J. Forecasting stock market indexes using principle component analysis and stochastic time effective neural networks[J]. Neurocomputing, 2015, 156:68-78.
 [10] DIAKOULAKI D, MAVROTAS G, PAPAYANNAKIS L. Determining objective weights in multiple criteria problems:the CRITIC method[J]. Computers & Operations Research, 1995, 22(7):763-770。
 [11] ALHAMZAWI R, YU K M. Bayesian Lasso-mixed quantile regression[J]. Journal of Statistical Computation and Simulation, 2014, 84(4):868-880.
 [12] KAUL A. Lasso with long memory regression errors[J]. Journal of Statistical Planning and Inference, 2014, 153:11-26.
 [13] LI L H, MO R. A comprehensive decision-making approach based on hierarchical attribute model for information fusion algorithms' performance evaluation[J]. Mathematical Problems in Engineering, 2014, 2014:Article ID 124156.
 [14] BACHE K, LICHMAN M. UCI machine learning repository[DB/OL]. Irvine, CA:University of California.[2016-09-20]. http://archive.ics.uci.edu/ml.
 |