《计算机应用》唯一官方网站 ›› 2020, Vol. 40 ›› Issue (2): 473-478.DOI: 10.11772/j.issn.1001-9081.2019101768
• 第36届CCF中国数据库学术会议(NDBC 2019) • 上一篇 下一篇
Yang LI1, Wei ZHANG1(), Chen PENG2
摘要:
作者身份识别任务旨在判断一篇文档的作者,但目前已有的作者身份识别方法都是目标独立的,意味着这些方法在预测作者身份时假设没有任何限定条件,这与实际情况不相符合。为了解决限定条件下的作者身份识别问题,提出了一种目标依赖的作者身份识别方法TDAA。首先,使用用户评论对应的商品ID作为限定信息;其次,为了使文本建模过程更加具有普适性,使用BERT提取预训练的评论文本特征;然后,使用卷积神经网络(CNN)进行深层次的文本特征提取;最后,为了将两种不同的信息融合起来,讨论了两种不同的融合方式。在亚马逊电影评论(Amazon Movie_and_TV)和CD评论(CDs_and_Vinyl_5)两个数据集上的实验结果表明,所提出的方法在精确率评价指标上较对比方法提高了4%~5%。
中图分类号: