《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (9): 2955-2962.DOI: 10.11772/j.issn.1001-9081.2022081159
        
                    
            周迪1,2, 张自力1,2( ), 陈佳1,3, 胡新荣2,3, 何儒汉2,3, 张俊4
), 陈佳1,3, 胡新荣2,3, 何儒汉2,3, 张俊4
                  
        
        
        
        
    
收稿日期:2022-08-07
									
				
											修回日期:2022-11-03
									
				
											接受日期:2022-11-14
									
				
											发布日期:2023-01-11
									
				
											出版日期:2023-09-10
									
				
			通讯作者:
					张自力
							作者简介:周迪(1997—),男,湖北武汉人,硕士研究生,CCF会员,主要研究方向:机器学习、图像处理基金资助:
        
                                                                                                                                                            Di ZHOU1,2, Zili ZHANG1,2( ), Jia CHEN1,3, Xinrong HU2,3, Ruhan HE2,3, Jun ZHANG4
), Jia CHEN1,3, Xinrong HU2,3, Ruhan HE2,3, Jun ZHANG4
			  
			
			
			
                
        
    
Received:2022-08-07
									
				
											Revised:2022-11-03
									
				
											Accepted:2022-11-14
									
				
											Online:2023-01-11
									
				
											Published:2023-09-10
									
			Contact:
					Zili ZHANG   
							About author:ZHOU Di, born in 1997, M. S. candidate, His research interests include machine learning, image processing.Supported by:摘要:
针对U-Net上采样过程容易丢失细节信息,以及胃癌病理图像数据集普遍偏小,容易出现过拟合的问题,提出一种基于改进U-Net的自动分割胃癌病理图像模型EOU-Net。EOU-Net在U-Net模型的基础上,将EfficientNetV2作为骨干特征提取网络,以增强网络编码器的特征提取能力。在解码阶段,基于物体上下文表示(OCR)探究细胞像素间的关系,并使用改进后的OCR模块解决上采样图像的细节丢失问题;然后,使用验证阶段增强(TTA)后处理对输入图像进行翻转和不同角度旋转后分别预测这些图像,再通过特征融合的方式将多个输入图像预测结果进行合并,进一步优化网络的输出结果,从而有效解决医学数据集较小的问题。在SEED、BOT以及PASCAL VOC 2012数据集上的实验结果表明,与OCRNet相比,EOU-Net的平均交并比(MIoU)分别提高了1.8、0.6以及4.5个百分点。可见EOU-Net能得到更准确的胃癌图像分割结果。
中图分类号:
周迪, 张自力, 陈佳, 胡新荣, 何儒汉, 张俊. 基于EfficientNetV2和物体上下文表示的胃癌图像分割方法[J]. 计算机应用, 2023, 43(9): 2955-2962.
Di ZHOU, Zili ZHANG, Jia CHEN, Xinrong HU, Ruhan HE, Jun ZHANG. Stomach cancer image segmentation method based on EfficientNetV2 and object-contextual representation[J]. Journal of Computer Applications, 2023, 43(9): 2955-2962.
| Stage | Operator | 编码器是否输出特征图 | 
|---|---|---|
| 0 | Conv3×3 |  | 
| 1 | Fused-MBConv1,k 3×3 | — | 
| 2 | Fused-MBConv4,k 3×3 |  | 
| 3 | Fused-MBConv4,k 3×3 |  | 
| 4 | MBConv4,k 3×3,SE 0.25 |  | 
| 5 | MBConv6,k 3×3,SE 0.25 | — | 
| 6 | MBConv6,k 3×3,SE 0.25 |  | 
表1 EfficientNetV2基本模块
Tab. 1 Basic modules of EfficientNetV2
| Stage | Operator | 编码器是否输出特征图 | 
|---|---|---|
| 0 | Conv3×3 |  | 
| 1 | Fused-MBConv1,k 3×3 | — | 
| 2 | Fused-MBConv4,k 3×3 |  | 
| 3 | Fused-MBConv4,k 3×3 |  | 
| 4 | MBConv4,k 3×3,SE 0.25 |  | 
| 5 | MBConv6,k 3×3,SE 0.25 | — | 
| 6 | MBConv6,k 3×3,SE 0.25 |  | 
| EfficientNetV2 | OCR | TTA | MIoU | 
|---|---|---|---|
| — | — | — | 80.1 | 
|  | — | — | 80.5 | 
|  |  | — | 80.8 | 
|  |  |  | 81.4 | 
表2 EOU-Net消融实验结果 (%)
Tab. 2 Ablation experimental results of EOU-Net
| EfficientNetV2 | OCR | TTA | MIoU | 
|---|---|---|---|
| — | — | — | 80.1 | 
|  | — | — | 80.5 | 
|  |  | — | 80.8 | 
|  |  |  | 81.4 | 
| 方法 | 图像增强 | 特征融合 | MIoU | 
|---|---|---|---|
| TTA | 垂直翻转 | 平均 | 81.20 | 
| 几何平均 | 79.50 | ||
| 相加 | 81.20 | ||
| 水平翻转 | 平均 | 81.20 | |
| 几何平均 | 79.50 | ||
| 相加 | 81.20 | ||
| 水平垂直翻转 | 平均 | 81.30 | |
| 几何平均 | 78.00 | ||
| 相加 | 81.30 | ||
| 水平垂直翻转+旋转 | 平均 | 81.40 | |
| 几何平均 | 76.70 | ||
| 相加 | 81.40 | ||
| DenseCRF-3 | — | — | 80.53 | 
| DenseCRF-5 | — | — | 80.49 | 
| DenseCRF-7 | — | — | 80.45 | 
表3 不同后处理方法的对比 (%)
Tab. 3 Comparisons of different post-processing methods
| 方法 | 图像增强 | 特征融合 | MIoU | 
|---|---|---|---|
| TTA | 垂直翻转 | 平均 | 81.20 | 
| 几何平均 | 79.50 | ||
| 相加 | 81.20 | ||
| 水平翻转 | 平均 | 81.20 | |
| 几何平均 | 79.50 | ||
| 相加 | 81.20 | ||
| 水平垂直翻转 | 平均 | 81.30 | |
| 几何平均 | 78.00 | ||
| 相加 | 81.30 | ||
| 水平垂直翻转+旋转 | 平均 | 81.40 | |
| 几何平均 | 76.70 | ||
| 相加 | 81.40 | ||
| DenseCRF-3 | — | — | 80.53 | 
| DenseCRF-5 | — | — | 80.49 | 
| DenseCRF-7 | — | — | 80.45 | 
| 数据集 | 模型 | MIoU | 不同种类的IoU | |
|---|---|---|---|---|
| 正常 | 病变 | |||
| SEED | Att R2U-Net* | 71.2 | 72.1 | 70.3 | 
| Att U-Net* | 74.3 | 76.5 | 72.2 | |
| EOU-Net* | 76.5 | 78.3 | 74.9 | |
| U-Net | 80.1 | 81.4 | 78.9 | |
| U-Net++ | 78.2 | 79.2 | 77.2 | |
| DeepLabV3+[ | 79.7 | 81.2 | 78.2 | |
| OCRNet[ | 79.6 | 80.8 | 78.5 | |
| EOU-Net | 81.4 | 82.5 | 80.3 | |
| BOT | Att R2U-Net* | 61.8 | 88.7 | 34.9 | 
| Att U-Net* | 67.3 | 88.5 | 46.0 | |
| EOU-Net* | 68.5 | 89.2 | 47.8 | |
| U-Net | 73.0 | 90.7 | 55.3 | |
| U-Net++ | 72.8 | 90.5 | 55.1 | |
| DeepLabV3+[ | 73.1 | 90.3 | 55.9 | |
| OCRNet[ | 74.8 | 91.1 | 58.5 | |
| EOU-Net | 75.4 | 91.4 | 59.4 | |
表4 SEED和BOT数据集上的对比实验结果 (%)
Tab. 4 Comparison experimental results on SEED and BOT datasets
| 数据集 | 模型 | MIoU | 不同种类的IoU | |
|---|---|---|---|---|
| 正常 | 病变 | |||
| SEED | Att R2U-Net* | 71.2 | 72.1 | 70.3 | 
| Att U-Net* | 74.3 | 76.5 | 72.2 | |
| EOU-Net* | 76.5 | 78.3 | 74.9 | |
| U-Net | 80.1 | 81.4 | 78.9 | |
| U-Net++ | 78.2 | 79.2 | 77.2 | |
| DeepLabV3+[ | 79.7 | 81.2 | 78.2 | |
| OCRNet[ | 79.6 | 80.8 | 78.5 | |
| EOU-Net | 81.4 | 82.5 | 80.3 | |
| BOT | Att R2U-Net* | 61.8 | 88.7 | 34.9 | 
| Att U-Net* | 67.3 | 88.5 | 46.0 | |
| EOU-Net* | 68.5 | 89.2 | 47.8 | |
| U-Net | 73.0 | 90.7 | 55.3 | |
| U-Net++ | 72.8 | 90.5 | 55.1 | |
| DeepLabV3+[ | 73.1 | 90.3 | 55.9 | |
| OCRNet[ | 74.8 | 91.1 | 58.5 | |
| EOU-Net | 75.4 | 91.4 | 59.4 | |
| 模型 | MIoU | 模型 | MIoU | 
|---|---|---|---|
| U-Net | 46.5 | DeepLabV3+[ | 67.4 | 
| FCN[ | 62.7 | OCRNet[ | 72.3 | 
| PSPNet[ | 66.8 | EOU-Net | 76.8 | 
表5 PASCAL VOC 2012数据集上的对比结果 (%)
Tab. 5 Comparison results on PASCAL VOC 2012 dataset
| 模型 | MIoU | 模型 | MIoU | 
|---|---|---|---|
| U-Net | 46.5 | DeepLabV3+[ | 67.4 | 
| FCN[ | 62.7 | OCRNet[ | 72.3 | 
| PSPNet[ | 66.8 | EOU-Net | 76.8 | 
| 1 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249. 10.3322/caac.21660 | 
| 2 | HOOI J K Y, LAI W Y, NG W K, et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis[J]. Gastroenterology, 2017, 153(2): 420-429. 10.1053/j.gastro.2017.04.022 | 
| 3 | 许燕,汤烨,闫雯,等. 病理人工智能的现状和展望[J]. 中华病理学杂志, 2017, 46(9): 593-595. 10.3760/cma.j.issn.0529-5807.2017.09.001 | 
| XU Y, TANG Y, YAN W, et al. Present situation and prospect of pathological artificial intelligence[J]. Chinese Journal of Pathology, 2017, 46(9): 593-595. 10.3760/cma.j.issn.0529-5807.2017.09.001 | |
| 4 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440. 10.1109/cvpr.2015.7298965 | 
| 5 | LIU Z W, LI X X, LUO P, et al. Semantic image segmentation via deep parsing network[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1377-1385. 10.1109/iccv.2015.162 | 
| 6 | ZHENG S, JAYASUMANA S, ROMERA-PAREDES B, et al. Conditional random fields as recurrent neural networks[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1529-1537. 10.1109/iccv.2015.179 | 
| 7 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. (2016-06-07) [2022-09-16].. 10.1109/tpami.2017.2699184 | 
| 8 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. 10.1109/tpami.2017.2699184 | 
| 9 | CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-12-05) [2022-09-16].. 10.1007/978-3-030-01234-2_49 | 
| 10 | CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 833-851. 10.1007/978-3-030-01234-2_49 | 
| 11 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. | 
| 12 | MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]// Proceedings of the 2016 International Conference on 3D Vision. Piscataway: IEEE, 2016: 565-571. 10.1109/3dv.2016.79 | 
| 13 | ALOM M Z, HASAN M, YAKOPCIC C, et al. Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation[EB/OL]. (2018-05-29) [2022-09-16].. 10.1109/naecon.2018.8556686 | 
| 14 | ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867. 10.1109/tmi.2019.2959609 | 
| 15 | OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL]. (2018-05-20) [2022-09-16].. | 
| 16 | 张泽中,高敬阳,赵地. MIFNet:基于多尺度输入与特征融合的胃癌病理图像分割方法[J]. 计算机应用, 2019, 39(S2): 107-113. | 
| ZHANG Z Z, GAO J Y, ZHAO D. MIFNet: pathological image segmentation method for stomach cancer based on multi-scale input and feature fusion[J]. Journal of Computer Applications, 2019, 39(S2):107-113. | |
| 17 | TAN M X, LE Q V. EfficientNetV2: smaller models and faster training[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 10096-10106. | 
| 18 | TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 6105-6114. | 
| 19 | ZOPH B, LE Q V. Neural architecture search with reinforcement learning[EB/OL]. (2017-02-15) [2022-09-16].. | 
| 20 | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2022-09-16].. 10.48550/arXiv.1704.04861 | 
| 21 | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239. 10.1109/cvpr.2017.660 | 
| 22 | WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7794-7803. 10.1109/cvpr.2018.00813 | 
| 23 | HUANG Z L, WANG X G, HUANG L C, et al. CCNet: criss-cross attention for semantic segmentation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 603-612. 10.1109/iccv.2019.00069 | 
| 24 | VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlation filter based tracking[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5000-5008. 10.1109/cvpr.2017.531 | 
| 25 | CHEN W L, ZHU X G, SUN R Q, et al. Tensor low-rank reconstruction for semantic segmentation[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12362. Cham: Springer, 2020: 52-69. | 
| 26 | YUAN Y H, CHEN X L, WANG J D. Object-contextual representations for semantic segmentation[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12351. Cham: Springer, 2020: 173-190. | 
| 27 | ODENA A, DUMOULIN V, OLAH C. Deconvolution and checkerboard artifacts[J]. Distill, 2016, 2016: No.00003. 10.23915/distill.00003 | 
| 28 | WACHINGER C, REUTER M, KLEIN T. DeepNAT: deep convolutional neural network for segmenting neuroanatomy[J]. NeuroImage, 2018, 170: 434-445. 10.1016/j.neuroimage.2017.02.035 | 
| 29 | 石志良,范伟楠,甘梓博,等. 骨边界增强滤波的图割算法[J/OL]. 南京师大学报(自然科学版): 1-13 (2022-10-28) [2022-11-01].. | 
| SHI Z L, FAN W N, GAN Z B, et al. Graph-cut algorithm for bone boundary enhancement filtering[J/OL]. Journal of Nanjing Normal University(Natural Science Edition): 1-13 (2022-10-28) [2022-11-03].. | 
| [1] | 许立君, 黎辉, 刘祖阳, 陈侃松, 马为駽. 基于3D‑Ghost卷积神经网络的脑胶质瘤MRI图像分割算法3D‑GA‑Unet[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1294-1302. | 
| [2] | 张鹏飞, 韩李涛, 冯恒健, 李洪梅. 基于注意力机制和全局特征优化的点云语义分割[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1086-1092. | 
| [3] | 李威, 陈玲, 徐修远, 朱敏, 郭际香, 周凯, 牛颢, 张煜宸, 易珊烨, 章毅, 罗凤鸣. 基于多任务学习的间质性肺病分割算法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1285-1293. | 
| [4] | 王铂越, 李英祥, 钟剑丹. 基于改进Res-UNet的昼夜地基云图分割网络[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1310-1316. | 
| [5] | 吴宁, 罗杨洋, 许华杰. 基于多尺度特征融合的遥感图像语义分割方法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 737-744. | 
| [6] | 刘永江, 陈斌. 基于多尺度记忆库的像素级无监督工业异常检测[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3587-3594. | 
| [7] | 刘雨生, 肖学中. 基于扩散模型微调的高保真图像编辑[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3574-3580. | 
| [8] | 李子怡, 曲婷婷, 崇乾鹏, 徐金东. 基于模糊多尺度特征的遥感图像分割网络[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3581-3586. | 
| [9] | 郑秋梅, 牛薇薇, 王风华, 赵丹. 基于细节增强的双分支实时语义分割网络[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3058-3066. | 
| [10] | 郑帅, 张晓龙, 邓鹤, 任宏伟. 基于多尺度特征融合和网格注意力机制的三维肝脏影像分割方法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2303-2310. | 
| [11] | 鲁斌, 柳杰林. 基于特征增强的三维点云语义分割[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1818-1825. | 
| [12] | 袁泉, 徐雲鹏, 唐成亮. 基于路径标签的文档级关系抽取方法[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1029-1035. | 
| [13] | 杨有, 张汝荟, 许鹏程, 康慷, 翟浩. 面向民国档案印章分割的改进U-Net[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 943-948. | 
| [14] | 何雪东, 宣士斌, 王款, 陈梦楠. 融合累积分布函数和通道注意力机制的DeepLabV3+图像分割算法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 936-942. | 
| [15] | 朱利安, 张鸿. 基于双分支条件生成对抗网络的非均匀图像去雾[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 567-574. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||