《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (11): 3617-3622.DOI: 10.11772/j.issn.1001-9081.2023111650
收稿日期:
2023-12-01
修回日期:
2024-05-20
接受日期:
2024-05-21
发布日期:
2024-06-05
出版日期:
2024-11-10
通讯作者:
顾聪
作者简介:
段其强(1999—),男,河南濮阳人,硕士研究生,主要研究方向:医学图像处理、深度学习基金资助:
Cong GU(), Qiqiang DUAN, Siyu REN
Received:
2023-12-01
Revised:
2024-05-20
Accepted:
2024-05-21
Online:
2024-06-05
Published:
2024-11-10
Contact:
Cong GU
About author:
DUAN Qiqiang, born in 1999, M. S. candidate. His research interests include medical image processing, deep learning.Supported by:
摘要:
基于深度学习的方法进行息肉图像分割时会面临以下问题:不同医疗设备采集的图像在特征分布上存在差异,导致不同的息肉分割数据集之间存在域偏移;现有模型大多专注于处理相同尺度大小的特征,对不同尺度息肉的捕捉能力存在一定的限制;息肉与周围组织的视觉特征和颜色差异通常较小,导致模型难以准确地区分息肉与背景。为了解决这些问题,提出以金字塔结构的视觉Transformer(PVT)为主体的上下文感知网络(CANet),主要包括以下模块:1)域自适应去噪模块(DADM),对低级特征图采用通道注意力以及空间注意力以解决不同域图像之间的域偏移以及噪声问题;2)尺度校准模块(SRM),处理编码器提取的多尺度特征,解决息肉大小和形状明显变化的问题;3)迭代式语义嵌入模块(ISEM),减少背景干扰,提高对目标边界的感知能力,提升息肉分割的准确性。在5个公开的结肠息肉数据集上的实验结果表明,CANet比当前广泛采用的结肠息肉分割方法取得了更好的结果,在Kvasir-SEG和CVC-ClinicDB数据集上的mDice(mean Dice)分别为92.6%和94.0%。
中图分类号:
顾聪, 段其强, 任思雨. 基于上下文感知网络的息肉分割算法[J]. 计算机应用, 2024, 44(11): 3617-3622.
Cong GU, Qiqiang DUAN, Siyu REN. Polyp segmentation algorithm based on context-aware network[J]. Journal of Computer Applications, 2024, 44(11): 3617-3622.
模型 | Kvasir-SEG数据集 | CVC-ClinicDB数据集 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
mDice | mIoU | m | MAE | mDice | mIoU | m | MAE | |||||
U-Net | 0.818 | 0.746 | 0.794 | 0.858 | 0.881 | 0.055 | 0.823 | 0.755 | 0.811 | 0.889 | 0.913 | 0.019 |
UNet++ | 0.821 | 0.743 | 0.808 | 0.862 | 0.886 | 0.048 | 0.794 | 0.729 | 0.785 | 0.873 | 0.891 | 0.022 |
SFA | 0.723 | 0.611 | 0.670 | 0.782 | 0.834 | 0.075 | 0.700 | 0.607 | 0.647 | 0.793 | 0.840 | 0.042 |
MSEG | 0.897 | 0.839 | 0.885 | 0.912 | 0.942 | 0.028 | 0.909 | 0.864 | 0.907 | 0.938 | 0.961 | 0.007 |
DCRNet | 0.886 | 0.825 | 0.868 | 0.911 | 0.933 | 0.035 | 0.896 | 0.844 | 0.890 | 0.933 | 0.964 | 0.010 |
ACSNet | 0.898 | 0.838 | 0.882 | 0.920 | 0.941 | 0.032 | 0.882 | 0.826 | 0.873 | 0.927 | 0.947 | 0.011 |
PraNet | 0.898 | 0.840 | 0.885 | 0.915 | 0.944 | 0.030 | 0.899 | 0.849 | 0.896 | 0.936 | 0.963 | 0.009 |
EU-Net | 0.908 | 0.854 | 0.893 | 0.917 | 0.951 | 0.028 | 0.902 | 0.846 | 0.891 | 0.936 | 0.959 | 0.011 |
SANet | 0.904 | 0.847 | 0.892 | 0.915 | 0.949 | 0.028 | 0.916 | 0.859 | 0.909 | 0.939 | 0.971 | 0.012 |
Polyp-PVT | 0.913 | 0.864 | 0.905 | 0.922 | 0.954 | 0.025 | 0.927 | 0.878 | 0.922 | 0.944 | 0.979 | 0.007 |
META-Unet | 0.896 | 0.837 | 0.884 | 0.909 | 0.942 | 0.032 | 0.909 | 0.856 | 0.905 | 0.939 | 0.963 | 0.011 |
CANet | 0.926 | 0.875 | 0.918 | 0.929 | 0.963 | 0.022 | 0.940 | 0.893 | 0.937 | 0.951 | 0.986 | 0.006 |
表1 不同模型在Kvasir-SEG和CVC-ClinicDB数据集上的性能对比
Tab. 1 Performance comparison of different models on Kvasir-SEG and CVC-ClinicDB dataset
模型 | Kvasir-SEG数据集 | CVC-ClinicDB数据集 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
mDice | mIoU | m | MAE | mDice | mIoU | m | MAE | |||||
U-Net | 0.818 | 0.746 | 0.794 | 0.858 | 0.881 | 0.055 | 0.823 | 0.755 | 0.811 | 0.889 | 0.913 | 0.019 |
UNet++ | 0.821 | 0.743 | 0.808 | 0.862 | 0.886 | 0.048 | 0.794 | 0.729 | 0.785 | 0.873 | 0.891 | 0.022 |
SFA | 0.723 | 0.611 | 0.670 | 0.782 | 0.834 | 0.075 | 0.700 | 0.607 | 0.647 | 0.793 | 0.840 | 0.042 |
MSEG | 0.897 | 0.839 | 0.885 | 0.912 | 0.942 | 0.028 | 0.909 | 0.864 | 0.907 | 0.938 | 0.961 | 0.007 |
DCRNet | 0.886 | 0.825 | 0.868 | 0.911 | 0.933 | 0.035 | 0.896 | 0.844 | 0.890 | 0.933 | 0.964 | 0.010 |
ACSNet | 0.898 | 0.838 | 0.882 | 0.920 | 0.941 | 0.032 | 0.882 | 0.826 | 0.873 | 0.927 | 0.947 | 0.011 |
PraNet | 0.898 | 0.840 | 0.885 | 0.915 | 0.944 | 0.030 | 0.899 | 0.849 | 0.896 | 0.936 | 0.963 | 0.009 |
EU-Net | 0.908 | 0.854 | 0.893 | 0.917 | 0.951 | 0.028 | 0.902 | 0.846 | 0.891 | 0.936 | 0.959 | 0.011 |
SANet | 0.904 | 0.847 | 0.892 | 0.915 | 0.949 | 0.028 | 0.916 | 0.859 | 0.909 | 0.939 | 0.971 | 0.012 |
Polyp-PVT | 0.913 | 0.864 | 0.905 | 0.922 | 0.954 | 0.025 | 0.927 | 0.878 | 0.922 | 0.944 | 0.979 | 0.007 |
META-Unet | 0.896 | 0.837 | 0.884 | 0.909 | 0.942 | 0.032 | 0.909 | 0.856 | 0.905 | 0.939 | 0.963 | 0.011 |
CANet | 0.926 | 0.875 | 0.918 | 0.929 | 0.963 | 0.022 | 0.940 | 0.893 | 0.937 | 0.951 | 0.986 | 0.006 |
模型 | mDice | mIoU | m | MAE | ||
---|---|---|---|---|---|---|
U-Net | 0.512 | 0.444 | 0.498 | 0.712 | 0.696 | 0.061 |
UNet++ | 0.483 | 0.410 | 0.467 | 0.691 | 0.680 | 0.064 |
SFA | 0.469 | 0.347 | 0.379 | 0.634 | 0.675 | 0.094 |
MSEG | 0.716 | 0.649 | 0.697 | 0.829 | 0.839 | 0.039 |
DCRNet | 0.735 | 0.666 | 0.724 | 0.834 | 0.859 | 0.038 |
ACSNet | 0.704 | 0.631 | 0.684 | 0.821 | 0.840 | 0.052 |
PraNet | 0.712 | 0.640 | 0.699 | 0.820 | 0.847 | 0.043 |
EU-Net | 0.756 | 0.681 | 0.730 | 0.831 | 0.863 | 0.045 |
SANet | 0.753 | 0.670 | 0.726 | 0.837 | 0.869 | 0.043 |
Polyp-PVT | 0.808 | 0.727 | 0.795 | 0.865 | 0.913 | 0.031 |
META-Unet | 0.751 | 0.675 | 0.737 | 0.836 | 0.881 | 0.038 |
CANet | 0.818 | 0.734 | 0.804 | 0.869 | 0.921 | 0.027 |
表2 不同模型在CVC-ColonDB数据集上的性能对比
Tab. 2 Performance comparison of different models on CVC-ColonDB dataset
模型 | mDice | mIoU | m | MAE | ||
---|---|---|---|---|---|---|
U-Net | 0.512 | 0.444 | 0.498 | 0.712 | 0.696 | 0.061 |
UNet++ | 0.483 | 0.410 | 0.467 | 0.691 | 0.680 | 0.064 |
SFA | 0.469 | 0.347 | 0.379 | 0.634 | 0.675 | 0.094 |
MSEG | 0.716 | 0.649 | 0.697 | 0.829 | 0.839 | 0.039 |
DCRNet | 0.735 | 0.666 | 0.724 | 0.834 | 0.859 | 0.038 |
ACSNet | 0.704 | 0.631 | 0.684 | 0.821 | 0.840 | 0.052 |
PraNet | 0.712 | 0.640 | 0.699 | 0.820 | 0.847 | 0.043 |
EU-Net | 0.756 | 0.681 | 0.730 | 0.831 | 0.863 | 0.045 |
SANet | 0.753 | 0.670 | 0.726 | 0.837 | 0.869 | 0.043 |
Polyp-PVT | 0.808 | 0.727 | 0.795 | 0.865 | 0.913 | 0.031 |
META-Unet | 0.751 | 0.675 | 0.737 | 0.836 | 0.881 | 0.038 |
CANet | 0.818 | 0.734 | 0.804 | 0.869 | 0.921 | 0.027 |
模型 | mDice | mIoU | m | MAE | ||
---|---|---|---|---|---|---|
U-Net | 0.398 | 0.335 | 0.366 | 0.684 | 0.643 | 0.036 |
UNet++ | 0.401 | 0.344 | 0.390 | 0.683 | 0.629 | 0.035 |
SFA | 0.297 | 0.217 | 0.231 | 0.557 | 0.531 | 0.109 |
MSEG | 0.578 | 0.509 | 0.530 | 0.754 | 0.737 | 0.059 |
DCRNet | 0.700 | 0.630 | 0.671 | 0.828 | 0.854 | 0.015 |
ACSNet | 0.556 | 0.496 | 0.506 | 0.736 | 0.742 | 0.096 |
PraNet | 0.628 | 0.567 | 0.600 | 0.794 | 0.808 | 0.031 |
EU-Net | 0.687 | 0.609 | 0.636 | 0.793 | 0.807 | 0.067 |
SANet | 0.750 | 0.654 | 0.685 | 0.849 | 0.881 | 0.015 |
Polyp-PVT | 0.787 | 0.706 | 0.750 | 0.871 | 0.906 | 0.013 |
META-Unet | 0.650 | 0.574 | 0.611 | 0.793 | 0.831 | 0.032 |
CANet | 0.793 | 0.710 | 0.752 | 0.873 | 0.900 | 0.017 |
表3 不同模型在ETIS数据集上的性能对比
Tab. 3 Performance comparison of different models on ETIS dataset
模型 | mDice | mIoU | m | MAE | ||
---|---|---|---|---|---|---|
U-Net | 0.398 | 0.335 | 0.366 | 0.684 | 0.643 | 0.036 |
UNet++ | 0.401 | 0.344 | 0.390 | 0.683 | 0.629 | 0.035 |
SFA | 0.297 | 0.217 | 0.231 | 0.557 | 0.531 | 0.109 |
MSEG | 0.578 | 0.509 | 0.530 | 0.754 | 0.737 | 0.059 |
DCRNet | 0.700 | 0.630 | 0.671 | 0.828 | 0.854 | 0.015 |
ACSNet | 0.556 | 0.496 | 0.506 | 0.736 | 0.742 | 0.096 |
PraNet | 0.628 | 0.567 | 0.600 | 0.794 | 0.808 | 0.031 |
EU-Net | 0.687 | 0.609 | 0.636 | 0.793 | 0.807 | 0.067 |
SANet | 0.750 | 0.654 | 0.685 | 0.849 | 0.881 | 0.015 |
Polyp-PVT | 0.787 | 0.706 | 0.750 | 0.871 | 0.906 | 0.013 |
META-Unet | 0.650 | 0.574 | 0.611 | 0.793 | 0.831 | 0.032 |
CANet | 0.793 | 0.710 | 0.752 | 0.873 | 0.900 | 0.017 |
模型 | mDice | mIoU | m | MAE | ||
---|---|---|---|---|---|---|
U-Net | 0.710 | 0.627 | 0.684 | 0.843 | 0.847 | 0.022 |
UNet++ | 0.707 | 0.624 | 0.687 | 0.839 | 0.834 | 0.018 |
SFA | 0.467 | 0.329 | 0.341 | 0.640 | 0.644 | 0.065 |
MSEG | 0.874 | 0.804 | 0.852 | 0.924 | 0.948 | 0.009 |
DCRNet | 0.863 | 0.787 | 0.825 | 0.923 | 0.939 | 0.013 |
ACSNet | 0.856 | 0.788 | 0.830 | 0.921 | 0.943 | 0.010 |
PraNet | 0.871 | 0.797 | 0.843 | 0.925 | 0.950 | 0.010 |
EU-Net | 0.837 | 0.765 | 0.805 | 0.904 | 0.919 | 0.015 |
SANet | 0.888 | 0.815 | 0.859 | 0.928 | 0.962 | 0.008 |
Polyp-PVT | 0.900 | 0.833 | 0.884 | 0.935 | 0.973 | 0.007 |
META-Unet | 0.885 | 0.815 | 0.864 | 0.929 | 0.958 | 0.010 |
CANet | 0.889 | 0.820 | 0.868 | 0.929 | 0.963 | 0.007 |
表4 不同模型在EndoScene数据集上的性能对比
Tab. 4 Performance comparison of different models on EndoScene dataset
模型 | mDice | mIoU | m | MAE | ||
---|---|---|---|---|---|---|
U-Net | 0.710 | 0.627 | 0.684 | 0.843 | 0.847 | 0.022 |
UNet++ | 0.707 | 0.624 | 0.687 | 0.839 | 0.834 | 0.018 |
SFA | 0.467 | 0.329 | 0.341 | 0.640 | 0.644 | 0.065 |
MSEG | 0.874 | 0.804 | 0.852 | 0.924 | 0.948 | 0.009 |
DCRNet | 0.863 | 0.787 | 0.825 | 0.923 | 0.939 | 0.013 |
ACSNet | 0.856 | 0.788 | 0.830 | 0.921 | 0.943 | 0.010 |
PraNet | 0.871 | 0.797 | 0.843 | 0.925 | 0.950 | 0.010 |
EU-Net | 0.837 | 0.765 | 0.805 | 0.904 | 0.919 | 0.015 |
SANet | 0.888 | 0.815 | 0.859 | 0.928 | 0.962 | 0.008 |
Polyp-PVT | 0.900 | 0.833 | 0.884 | 0.935 | 0.973 | 0.007 |
META-Unet | 0.885 | 0.815 | 0.864 | 0.929 | 0.958 | 0.010 |
CANet | 0.889 | 0.820 | 0.868 | 0.929 | 0.963 | 0.007 |
模型 | Kvasir-SEG | CVC-ColonDB | ||
---|---|---|---|---|
mDice | mIoU | mDice | mIoU | |
CANet | 0.926 | 0.875 | 0.818 | 0.734 |
CANet(w/oDADM) | 0.916 | 0.865 | 0.787 | 0.705 |
CANet(w/oSRM) | 0.904 | 0.848 | 0.806 | 0.727 |
CANet(w/oISEM) | 0.917 | 0.863 | 0.795 | 0.709 |
表5 消融实验的对比结果
Tab. 5 Comparison results of ablation study
模型 | Kvasir-SEG | CVC-ColonDB | ||
---|---|---|---|---|
mDice | mIoU | mDice | mIoU | |
CANet | 0.926 | 0.875 | 0.818 | 0.734 |
CANet(w/oDADM) | 0.916 | 0.865 | 0.787 | 0.705 |
CANet(w/oSRM) | 0.904 | 0.848 | 0.806 | 0.727 |
CANet(w/oISEM) | 0.917 | 0.863 | 0.795 | 0.709 |
1 | 张欢,刘静,冯毅博,等.U-Net及其在肝脏和肝脏肿瘤分割中的应用综述[J].计算机工程与应用,2022,58(2):1-14. |
ZHANG H, LIU J, FENG Y B, et al. Review of U-Net and its application in segmentation of liver and liver tumors[J]. Computer Engineering and Applications, 2022, 58(2): 1-14. | |
2 | 张正杰,程云章,黄陈.影像组学在结直肠癌诊疗中的应用及研究进展[J].生物医学工程研究, 2023,42(1):96-99. |
ZHANG Z J, CHENG Y Z, HUANG C. Application and research progress of radiomics in the diagnosis and treatment of colorectal cancer[J]. Journal of Biomedical Engineering Research, 2023, 42(1): 96-99. | |
3 | JIA X, XING X, YUAN Y, et al. Wireless capsule endoscopy: a new tool for cancer screening in the colon with deep-learning-based polyp recognition[J]. Proceedings of the IEEE, 2020, 108(1): 178-197. |
4 | MAMONOV A V, FIGUEIREDO I N, FIGUEIREDO P N, et al. Automated polyp detection in colon capsule endoscopy[J]. IEEE Transactions on Medical Imaging, 2014, 33(7): 1488-1502. |
5 | MAGHSOUDI O H. Superpixel based segmentation and classification of polyps in wireless capsule endoscopy[C]// Proceedings of the 2017 IEEE Signal Processing in Medicine and Biology Symposium. Piscataway: IEEE, 2017: 1-4. |
6 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
7 | BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. |
8 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. |
9 | FANG Y, CHEN C, YUAN Y, et al. Selective feature aggregation network with area-boundary constraints for polyp segmentation[C]// Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11764. Cham: Springer, 2019: 302-310. |
10 | FAN D P, JI G P, ZHOU T, et al. PraNet: parallel reverse attention network for polyp segmentation[C]// Proceedings of the 2020 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12266. Cham: Springer, 2020: 263-273. |
11 | KIM T, LEE H, KIM D. UACANet: uncertainty augmented context attention for polyp segmentation[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 2167-2175. |
12 | WANG W, XIE E, LI X, et al. PVT v2: improved baselines with pyramid vision Transformer[J]. Computational Visual Media, 2022, 8(3): 415-424. |
13 | ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259. |
14 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
15 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
16 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2023-10-05].. |
17 | LIN M, CHEN Q, YAN S. Network in network[EB/OL]. [2023-10-05].. |
18 | WU H, ZHAO Z, ZHONG J, et al. PolypSeg+: a lightweight context-aware network for real-time polyp segmentation[J]. IEEE Transactions on Cybernetics, 2023, 53(4): 2610-2621. |
19 | JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-SEG: a segmented polyp dataset[C]// Proceeding of 2020 International Conference on MultiMedia Modeling, LNCS 11962. Cham: Springer, 2020: 451-462. |
20 | BERNAL J, SÁNCHEZ F J, FERNÁNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Computerized Medical Imaging and Graphics, 2015, 43: 99-111. |
21 | TAJBAKHSH N, GURUDU S R, LIANG J. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Transactions on Medical Imaging, 2016, 35(2): 630-644. |
22 | SILVA J, HISTACE A, ROMAIN O, et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer[J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9(2): 283-293. |
23 | VÁZQUEZ D, BERNAL J, SÁNCHEZ F J, et al. A benchmark for endoluminal scene segmentation of colonoscopy images[J]. Journal of Healthcare Engineering, 2017, 2017: No.4037190. |
24 | ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]// Proceedings of the 2018 International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, LNCS 11045. Cham: Springer, 2018: 3-11. |
25 | HUANG C H, WU H Y, LIN Y L. HarDNet-MSEG: a simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 FPS[EB/OL]. [2023-11-13].. |
26 | YIN Z, LIANG K, MA Z, et al. Duplex contextual relation network for polyp segmentation[C]// Proceedings of the IEEE 19th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2022: 1-5. |
27 | ZHANG R, LI G, LI Z, et al. Adaptive context selection for polyp segmentation[C]// Proceedings of the 2020 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12266. Cham: Springer, 2020: 253-262. |
28 | PATEL K, BUR A M, WANG G. Enhanced U-Net: a feature enhancement network for polyp segmentation[C]// Proceedings of the 18th Conference on Robots and Vision. Piscataway: IEEE, 2021: 181-188. |
29 | WEI J, HU Y, ZHANG R, et al. Shallow attention network for polyp segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 699-708. |
30 | DONG B, WANG W, FAN D P, et al. Polyp-PVT: polyp segmentation with pyramid vision Transformers[J]. CAAI Artificial Intelligence Research, 2023, 2: No.9150015. |
31 | WU H, ZHAO Z, WANG Z. META-Unet: multi-scale efficient Transformer attention Unet for fast and high-accuracy polyp segmentation[J]. IEEE Transactions on Automation Science and Engineering, 2023(Early Access): 1-12. |
[1] | 方介泼, 陶重犇. 应对零日攻击的混合车联网入侵检测系统[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2763-2769. |
[2] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[3] | 杨鑫, 陈雪妮, 吴春江, 周世杰. 结合变种残差模型和Transformer的城市公路短时交通流预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2947-2951. |
[4] | 任烈弘, 黄铝文, 田旭, 段飞. 基于DFT的频率敏感双分支Transformer多变量长时间序列预测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2739-2746. |
[5] | 贾洁茹, 杨建超, 张硕蕊, 闫涛, 陈斌. 基于自蒸馏视觉Transformer的无监督行人重识别[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2893-2902. |
[6] | 李金金, 桑国明, 张益嘉. APK-CNN和Transformer增强的多域虚假新闻检测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2674-2682. |
[7] | 丁宇伟, 石洪波, 李杰, 梁敏. 基于局部和全局特征解耦的图像去噪网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2571-2579. |
[8] | 邓凯丽, 魏伟波, 潘振宽. 改进掩码自编码器的工业缺陷检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2595-2603. |
[9] | 杨帆, 邹窈, 朱明志, 马振伟, 程大伟, 蒋昌俊. 基于图注意力Transformer神经网络的信用卡欺诈检测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2634-2642. |
[10] | 李大海, 王忠华, 王振东. 结合空间域和频域信息的双分支低光照图像增强网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2175-2182. |
[11] | 吕锡婷, 赵敬华, 荣海迎, 赵嘉乐. 基于Transformer和关系图卷积网络的信息传播预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1760-1766. |
[12] | 黎施彬, 龚俊, 汤圣君. 基于Graph Transformer的半监督异配图表示学习模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1816-1823. |
[13] | 黄梦源, 常侃, 凌铭阳, 韦新杰, 覃团发. 基于层间引导的低光照图像渐进增强算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1911-1919. |
[14] | 席治远, 唐超, 童安炀, 王文剑. 基于双路时空网络的驾驶员行为识别[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1511-1519. |
[15] | 刘子涵, 周登文, 刘玉铠. 基于全局依赖Transformer的图像超分辨率网络[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1588-1596. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||