《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (5): 1393-1400.DOI: 10.11772/j.issn.1001-9081.2023121814
所属专题: 进化计算专题(2024年第5期“进化计算专题”导读,全文已上线)
收稿日期:
2023-12-29
接受日期:
2024-01-16
发布日期:
2024-04-26
出版日期:
2024-05-10
通讯作者:
陈伟能
作者简介:
魏凤凤(1996—),女,山东青岛人,博士,CCF会员,主要研究方向:群体智能、演化计算基金资助:
Received:
2023-12-29
Accepted:
2024-01-16
Online:
2024-04-26
Published:
2024-05-10
Contact:
Weineng CHEN
About author:
WEI Fengfeng, born in 1996, Ph. D. Her research interests include swarm intelligence, evolutionary computation.
Supported by:
摘要:
泛在计算模式下,数据分布式获取和处理带来了分布式数据驱动优化的需求。针对数据分布获取、约束异步评估且信息缺失的挑战,构建分布式数据驱动的多约束进化优化算法(DDDEA)框架,由一系列终端节点负责数据提供和分布式评估,服务器节点负责全局进化优化。基于该框架具体实现了一个算法实例,终端节点利用局部数据构建径向基函数(RBF)模型,辅助驱动服务器节点差分进化(DE)算法对问题进行寻优。通过与3个集中式数据驱动的多约束进化优化算法在两个标准测试集的实验对比,DDDEA在68.4%的测试用例中取得显著最优结果,在84.2%的测试用例中找到可行解的成功率为1.00,表明该算法具有良好的全局搜索能力和收敛能力。
中图分类号:
魏凤凤, 陈伟能. 分布式数据驱动的多约束进化优化算法[J]. 计算机应用, 2024, 44(5): 1393-1400.
Fengfeng WEI, Weineng CHEN. Distributed data-driven evolutionary computation for multi-constrained optimization[J]. Journal of Computer Applications, 2024, 44(5): 1393-1400.
测试用例 | 不等约束数 | 维数 | 可行域比例/% |
---|---|---|---|
g01 | 9 | 13 | 0.011 1 |
g02 | 2 | 20 | 99.997 1 |
g04 | 6 | 5 | 52.123 0 |
g06 | 2 | 2 | 0.006 6 |
g07 | 8 | 10 | 0.000 3 |
g08 | 2 | 2 | 0.856 0 |
g09 | 4 | 7 | 0.512 1 |
g10 | 6 | 8 | 0.001 0 |
g12 | 1 | 3 | 4.771 3 |
g16 | 38 | 5 | 0.020 4 |
g18 | 13 | 9 | 0.000 0 |
g19 | 5 | 15 | 33.476 1 |
g24 | 2 | 2 | 79.655 6 |
c01 | 2 | 30 | 100.000 0 |
c07 | 1 | 30 | 50.372 5 |
c08 | 1 | 30 | 37.527 8 |
c13 | 3 | 30 | 0.000 0 |
c14 | 3 | 30 | 0.612 3 |
c15 | 3 | 30 | 0.602 3 |
表1 实验中使用的CEC2006和CEC2010数据集测试用例
Tab. 1 Test cases used in experiment from CEC2006 and CEC2010
测试用例 | 不等约束数 | 维数 | 可行域比例/% |
---|---|---|---|
g01 | 9 | 13 | 0.011 1 |
g02 | 2 | 20 | 99.997 1 |
g04 | 6 | 5 | 52.123 0 |
g06 | 2 | 2 | 0.006 6 |
g07 | 8 | 10 | 0.000 3 |
g08 | 2 | 2 | 0.856 0 |
g09 | 4 | 7 | 0.512 1 |
g10 | 6 | 8 | 0.001 0 |
g12 | 1 | 3 | 4.771 3 |
g16 | 38 | 5 | 0.020 4 |
g18 | 13 | 9 | 0.000 0 |
g19 | 5 | 15 | 33.476 1 |
g24 | 2 | 2 | 79.655 6 |
c01 | 2 | 30 | 100.000 0 |
c07 | 1 | 30 | 50.372 5 |
c08 | 1 | 30 | 37.527 8 |
c13 | 3 | 30 | 0.000 0 |
c14 | 3 | 30 | 0.612 3 |
c15 | 3 | 30 | 0.602 3 |
测试用例 | DDDEA | GPEEC | MPMLS | KTLBO |
---|---|---|---|---|
g01 | -14.793 1 | -9.611 3- | -5.214 2- | -0.751 4- |
g02 | -0.413 8 | -0.338 08- | -0.318 1- | -0.340 3- |
g04 | -3.044 3E+04 | -3.043 0E+04- | -3.060 0E+04+ | -2.981 8E+04- |
g06 | -6.961 8E+03 | -6.110 0E+03- | -6.954 4E+03- | -3.646 9E+03- |
g07 | 27.936 3 | 28.904 3- | 997.986 2- | 216.913 0≈ |
g08 | -0.095 8 | -0.094 7- | -0.095 8- | -0.072 6- |
g09 | 963.162 9 | 2.392 7E+06- | 823.029 2+ | 934.816 4≈ |
g10 | 7.423 0E+03 | NaN/ | 1.288 1E+04- | 1.150 2E+04- |
g12 | -1.000 0 | -1.000 0≈ | -1.000 0≈ | -1.000 0≈ |
g16 | -1.577 6 | -1.402 2- | -1.537 9≈ | -1.246 6≈ |
g18 | NaN | -0.402 6/ | NaN/ | -0.083 9/ |
g19 | 165.747 1 | 1.739 5E+03- | 578.727 0- | 810.270 7- |
g24 | -5.508 0 | -5.471 9≈ | -5.505 0- | -5.168 1- |
c01 | -0.292 5 | -0.189 0- | -0.222 7- | -0.285 5- |
c07 | 9.113 3E+07 | 9.623 8E+10- | 4.309 9E+08- | 4.971 5E+09- |
c08 | 4.009 7E+08 | 8.795 3E+10- | 1.292 5E+09- | 1.831 8E+09- |
c13 | -11.295 9 | -7.545 5- | -14.820 0+ | -6.780 3- |
c14 | 6.057 2E+12 | 3.964 8E+13- | 6.978 9E+13- | 3.103 0E+14- |
c15 | NaN | 5.115 9E+14/ | 3.269 7E+14/ | 6.293 1E+14/ |
#(+,-,≈,/) | (0,14,2,3) | (3,12,2,2) | (0,13,4,2) |
表2 DDDEA与三个集中式算法均值对比结果
Tab. 2 Mean comparison results between DDDEA and three centralized algorithms
测试用例 | DDDEA | GPEEC | MPMLS | KTLBO |
---|---|---|---|---|
g01 | -14.793 1 | -9.611 3- | -5.214 2- | -0.751 4- |
g02 | -0.413 8 | -0.338 08- | -0.318 1- | -0.340 3- |
g04 | -3.044 3E+04 | -3.043 0E+04- | -3.060 0E+04+ | -2.981 8E+04- |
g06 | -6.961 8E+03 | -6.110 0E+03- | -6.954 4E+03- | -3.646 9E+03- |
g07 | 27.936 3 | 28.904 3- | 997.986 2- | 216.913 0≈ |
g08 | -0.095 8 | -0.094 7- | -0.095 8- | -0.072 6- |
g09 | 963.162 9 | 2.392 7E+06- | 823.029 2+ | 934.816 4≈ |
g10 | 7.423 0E+03 | NaN/ | 1.288 1E+04- | 1.150 2E+04- |
g12 | -1.000 0 | -1.000 0≈ | -1.000 0≈ | -1.000 0≈ |
g16 | -1.577 6 | -1.402 2- | -1.537 9≈ | -1.246 6≈ |
g18 | NaN | -0.402 6/ | NaN/ | -0.083 9/ |
g19 | 165.747 1 | 1.739 5E+03- | 578.727 0- | 810.270 7- |
g24 | -5.508 0 | -5.471 9≈ | -5.505 0- | -5.168 1- |
c01 | -0.292 5 | -0.189 0- | -0.222 7- | -0.285 5- |
c07 | 9.113 3E+07 | 9.623 8E+10- | 4.309 9E+08- | 4.971 5E+09- |
c08 | 4.009 7E+08 | 8.795 3E+10- | 1.292 5E+09- | 1.831 8E+09- |
c13 | -11.295 9 | -7.545 5- | -14.820 0+ | -6.780 3- |
c14 | 6.057 2E+12 | 3.964 8E+13- | 6.978 9E+13- | 3.103 0E+14- |
c15 | NaN | 5.115 9E+14/ | 3.269 7E+14/ | 6.293 1E+14/ |
#(+,-,≈,/) | (0,14,2,3) | (3,12,2,2) | (0,13,4,2) |
测试用例 | DDDEA | GPEEC | MPMLS | KTLBO |
---|---|---|---|---|
g01 | 1.00 | 1.00 | 0.80 | 0.90 |
g02 | 1.00 | 1.00 | 1.00 | 1.00 |
g04 | 1.00 | 1.00 | 1.00 | 1.00 |
g06 | 1.00 | 1.00 | 1.00 | 0.80 |
g07 | 1.00 | 0.65 | 0.40 | 0.05 |
g08 | 1.00 | 1.00 | 1.00 | 1.00 |
g09 | 1.00 | 0.80 | 1.00 | 1.00 |
g10 | 1.00 | 0.00 | 0.95 | 0.10 |
g12 | 1.00 | 0.20 | 1.00 | 1.00 |
g16 | 0.50 | 1.00 | 0.05 | 0.05 |
g18 | 0.00 | 1.00 | 0.00 | 0.25 |
g19 | 1.00 | 1.00 | 1.00 | 1.00 |
g24 | 1.00 | 1.00 | 1.00 | 1.00 |
c01 | 1.00 | 1.00 | 1.00 | 1.00 |
c07 | 1.00 | 1.00 | 1.00 | 1.00 |
c08 | 1.00 | 1.00 | 1.00 | 1.00 |
c13 | 1.00 | 0.80 | 0.95 | 1.00 |
c14 | 1.00 | 1.00 | 1.00 | 0.95 |
c15 | 0.00 | 0.20 | 0.10 | 0.15 |
表3 DDDEA与三个集中式算法成功率对比结果
Tab. 3 Successful ratio comparison results between DDDEA and three centralized algorithms
测试用例 | DDDEA | GPEEC | MPMLS | KTLBO |
---|---|---|---|---|
g01 | 1.00 | 1.00 | 0.80 | 0.90 |
g02 | 1.00 | 1.00 | 1.00 | 1.00 |
g04 | 1.00 | 1.00 | 1.00 | 1.00 |
g06 | 1.00 | 1.00 | 1.00 | 0.80 |
g07 | 1.00 | 0.65 | 0.40 | 0.05 |
g08 | 1.00 | 1.00 | 1.00 | 1.00 |
g09 | 1.00 | 0.80 | 1.00 | 1.00 |
g10 | 1.00 | 0.00 | 0.95 | 0.10 |
g12 | 1.00 | 0.20 | 1.00 | 1.00 |
g16 | 0.50 | 1.00 | 0.05 | 0.05 |
g18 | 0.00 | 1.00 | 0.00 | 0.25 |
g19 | 1.00 | 1.00 | 1.00 | 1.00 |
g24 | 1.00 | 1.00 | 1.00 | 1.00 |
c01 | 1.00 | 1.00 | 1.00 | 1.00 |
c07 | 1.00 | 1.00 | 1.00 | 1.00 |
c08 | 1.00 | 1.00 | 1.00 | 1.00 |
c13 | 1.00 | 0.80 | 0.95 | 1.00 |
c14 | 1.00 | 1.00 | 1.00 | 0.95 |
c15 | 0.00 | 0.20 | 0.10 | 0.15 |
1 | 马华东,赵东,王新兵,等.一种新型群智感知系统架构模型和实现方法[J].中国科学:信息科学,2023,53(7):1262-1280. 10.1360/ssi-2022-0157 |
MA H D, ZHAO D, WANG X B, et al. A novel crowdsensing system architecture model and its implementation methods[J]. SCIENTIA SINICA Informationis, 2023, 53(7): 1262-1280. 10.1360/ssi-2022-0157 | |
2 | 门瑞,樊书嘉,阿喜达,等.物联网中结合计算卸载和区块链的综述[J].计算机应用,2023,43(10):3008-3016. 10.11772/j.issn.1001-9081.2022091466 |
MEN R, FAN S J, SHAN Axida, et al. Survey on combination of computation offloading and blockchain in internet of things[J]. Journal of Computer Applications, 2023, 43(10): 3008-3016. 10.11772/j.issn.1001-9081.2022091466 | |
3 | 吴磊,郭斌,徐若楠,等.泛在计算视角下的群智模块化机器人[J]. 中国科学:信息科学,2023,53(11):2107-2151. 10.1360/ssi-2022-0385 |
WU L, GUO B, XU R N, et al. Emergence of crowd modular robotics: a ubiquitous computing perspective[J]. SCIENTIA SINICA Informationis, 2023, 53(11): 2107-2151. 10.1360/ssi-2022-0385 | |
4 | ZHANG Z, LIN S, DEDEOGLU M, et al. Data-driven distributionally robust optimization for edge intelligence[C]// Proceedings of the 2020 IEEE Conference on Computer Communications. Piscataway: IEEE, 2020: 2619-2628. 10.1109/infocom41043.2020.9155440 |
5 | YANG Q, LIU Y, CHEN T, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 1-19. 10.1145/3298981 |
6 | 公茂果,高原,王炯乾,等.基于进化策略的自适应联邦学习算法[J].中国科学:信息科学,2023,53(3):437-453. 10.1360/ssi-2021-0190 |
GONG M G, GAO Y, WANG J Q, et al. Adaptive federated learning algorithm based on evolution strategies[J]. SCIENTIA SINICA Informationis, 2023, 53(3): 437-453. 10.1360/ssi-2021-0190 | |
7 | HONG T, ZHANG Y, LIU J, et al. Distributed data-driven optimization for voltage regulation in distribution systems[J]. IEEE Transactions on Power Systems, 2023, 39(1): 1263-1273. 10.1109/tpwrs.2023.3242868 |
8 | QIN J, ZHU Y, FU W. Distributed clustering algorithm in sensor networks via normalized information measures[J]. IEEE Transactions on Signal Processing, 2020, 68: 3266-3279. 10.1109/tsp.2020.2995506 |
9 | WHITLEY L D. An overview of evolutionary algorithms: practical issues and common pitfalls[J]. Information and Software Technology, 2001, 43(14): 817-831. 10.1016/s0950-5849(01)00188-4 |
10 | TANG J, LIU G, PAN Q. A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(10): 1627-1643. 10.1109/jas.2021.1004129 |
11 | 刘若辰,李建霞,刘静,等.动态多目标优化研究综述[J].计算机学报,2020,43(7):1246-1278. 10.11897/SP.J.1016.2020.01246 |
LIU R C, LI J X, LIU J, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7): 1246-1278. 10.11897/SP.J.1016.2020.01246 | |
12 | 柴天佑,丁进良,王宏,等.复杂工业过程运行的混合智能优化控制方法[J].自动化学报,2008,34(5):505-515. 10.3724/sp.j.1004.2008.00505 |
CHAI T Y, DING J L, WANG H, et al. Hybrid intelligent optimal control method for operation of complex industrial processes[J]. Acta Automatica Sinica, 2008, 34(5): 505-515. 10.3724/sp.j.1004.2008.00505 | |
13 | 王凌,王晶晶.考虑运输时间的分布式绿色柔性作业车间调度协同群智能优化[J].中国科学:技术科学,2023,53(2):243-257. 10.1360/sst-2021-0355 |
WANG L, WANG J J. A cooperative memetic algorithm for the distributed green flexible job shop with transportation time[J]. SCIENTIA SINICA Technologica, 2023, 53(2): 243-257. 10.1360/sst-2021-0355 | |
14 | GONG Y-J, CHEN W-N, ZHAN Z-H, et al. Distributed evolutionary algorithms and their models: a survey of the state-of-the-art[J]. Applied Soft Computing, 2015, 34: 286-300. 10.1016/j.asoc.2015.04.061 |
15 | XU J, JIN Y, DU W, et al. A federated data-driven evolutionary algorithm[J]. Knowledge-Based Systems, 2021, 233: 107532. 10.1016/j.knosys.2021.107532 |
16 | ZHU H, JIN Y. Real-time federated evolutionary neural architecture search[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(2): 364-378. 10.1109/tevc.2021.3099448 |
17 | LIU Q, YAN Y, LIGETI P, et al. A secure federated data-driven evolutionary multi-objective optimization algorithm[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1): 191-205. 10.1109/tetci.2023.3313555 |
18 | GUO X-Q, CHEN W-N, WEI F-F, et al. Edge-cloud co‑evolutionary algorithms for distributed data-driven optimization problems[J]. IEEE Transactions on Cybernetics, 2023, 53(10): 6598-6611. 10.1109/tcyb.2022.3219452 |
19 | MORÁN-FERNÁNDEZ L, BOLÓN-CANEDO V, ALONSO-BETANZOS A. Centralized vs. distributed feature selection methods based on data complexity measures[J]. Knowledge-Based Systems, 2017, 117: 27-45. 10.1016/j.knosys.2016.09.022 |
20 | RAHI K H, SINGH H K, RAY T. Partial evaluation strategies for expensive evolutionary constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(6): 1103-1117. 10.1109/tevc.2021.3078486 |
21 | GIOVANNI DE G, MUNDO D, MALETTA C, et al. Multi-objective optimization of a vehicle body by combining gradient-based methods and vehicle concept modelling[J]. Case Studies in Mechanical Systems and Signal Processing, 2015, 1: 1-7. 10.1016/j.csmssp.2015.06.002 |
22 | WEI F-F, CHEN W-N, ZHANG J. A hybrid regressor and classifier-assisted evolutionary algorithm for expensive optimization with incomplete constraint information[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(2): 5071-5083. 10.1109/tsmc.2023.3259947 |
23 | LIU B, ZHANG Q, GIELEN G G E. A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(2): 180-192. 10.1109/tevc.2013.2248012 |
24 | POWELL M J D. The uniform convergence of thin plate spline interpolation in two dimensions[J]. Numerische Mathematik, 1994, 128: 107-128. 10.1007/s002110050051 |
25 | REGIS R G, SHOEMAKER C A. A stochastic radial basis function method for the global optimization of expensive functions[J]. INFORMS Journal on Computing, 2007, 19(4): 497-509. 10.1287/ijoc.1060.0182 |
26 | REGIS R G. Particle swarm with radial basis function surrogates for expensive black-box optimization[J]. Journal of Computational Science, 2014, 5(1): 12-23. 10.1016/j.jocs.2013.07.004 |
27 | STORN R, KENNETH P. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. |
28 | WANG W, LIU H-L, CHEN TAN KAY, et al. A surrogate-assisted differential evolution algorithm for high-dimensional expensive optimization problems[J]. IEEE Transactions on Cybernetics, 2023, 53(4): 2685-2697. 10.1109/tcyb.2022.3175533 |
29 | WANG Y, YIN D-Q, YANG S, et al. Global and local surrogate-assisted differential evolution for expensive constrained optimization problems with inequality constraints[J]. IEEE Transactions on Cybernetics, 2019, 49(5): 1642-1656. 10.1109/tcyb.2018.2809430 |
30 | WANG B-C, LI H-X, LI J-P, et al. Composite differential evolution for constrained evolutionary optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(7): 1482-1495. 10.1109/tsmc.2018.2807785 |
31 | STEIN M. Large sample properties of simulations using Latin hypercube sampling[J]. Technometrics, 1987, 29(2): 143-151. 10.1080/00401706.1987.10488205 |
32 | LI J-Y, ZHAN Z-H, WANG H, et al. Data-driven evolutionary algorithm with perturbation-based ensemble surrogates[J]. IEEE Transactions on Cybernetics, 2021, 51(8): 3925-3937. 10.1109/tcyb.2020.3008280 |
33 | 季新芳,张勇,巩敦卫,等.异构集成代理辅助的区间多模态粒子群优化算法[J/OL].自动化学报,2021,45(x):1-23 [2023-12-05]. . 10.16383/j.aas.c210223 |
JI X F, ZAHNG Y, GONG D W, et al. Interval multimodal particle swarm optimization algorithm assisted by heterogeneous ensemble surrogate[J/OL]. Acta Automatica Sinica, 2021, 45(x): 1-23 [2023-12-05]. . 10.16383/j.aas.c210223 | |
34 | DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66. 10.1109/4235.585892 |
35 | CHEN W-N, ZHANG J, CHUNG H S H, et al. A novel set-based particle swarm optimization method for discrete optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(2): 278-300. 10.1109/tevc.2009.2030331 |
36 | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the 1995 International Conference on Neural Networks. Piscataway: IEEE, 1995: 1942-1948. 10.1109/ICNN.1995.488968 |
37 | VANNESCHI L, CASTELLI M, SILVA S. A survey of semantic methods in genetic programming[J]. Genetic Programming and Evolvable Machines, 2014, 15(2): 195-214. 10.1007/s10710-013-9210-0 |
38 | WEI F-F, CHEN W-N, YANG Q, et al. A classifier-assisted level-based learning swarm optimizer for expensive optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(2): 219-233. 10.1109/tevc.2020.3017865 |
39 | PILLAI A S, SINGH K, SARAVANAN V, et al. A genetic algorithm-based method for optimizing the energy consumption and performance of multiprocessor systems[J]. Soft Computing, 2018, 22(10): 3271-3285. 10.1007/s00500-017-2789-y |
40 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. 10.1109/4235.996017 |
41 | REGIS R G. Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 326-347. 10.1109/tevc.2013.2262111 |
42 | HANDOKO S D, KWOH C K, ONG Y S. Feasibility structure modeling: an effective chaperone for constrained memetic algorithms[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(5): 740-758. 10.1109/tevc.2009.2039141 |
43 | LIANG J J, RUNARSSON T P, MEZURA-MONTES E, et al. Problem definitions and evaluation criteria for the CEC 2006 special session on real-parameter optimization[J]. Journal of Applied Mechanics, 2006, 41(8): 1-24. |
44 | MALLIPEDDI R, SUGANTHAN P N. Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization[R/OL]. [2023-11-10]. . |
45 | LIU B, ZHANG Q, GIELEN G. A surrogate-model-assisted evolutionary algorithm for computationally expensive design optimization problems with inequality constraints[J]. Simulation-Driven Modeling and Optimization, 2016, 153: 347-370. 10.1007/978-3-319-27517-8_14 |
46 | LI G, ZHANG Q. Multiple penalties and multiple local surrogates for expensive constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(4): 769-778. 10.1109/tevc.2021.3066606 |
47 | DONG H, WANG P, FU C, et al. Kriging-assisted Teaching-Learning-Based Optimization (KTLBO) to solve computationally expensive constrained problems[J]. Information Sciences, 2021, 556: 404-435. 10.1016/j.ins.2020.09.073 |
[1] | 刘晓芳, 张军. 概率驱动的动态多目标多智能体协同调度进化优化[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1372-1377. |
[2] | 黄亚伟, 钱雪忠, 宋威. 基于双档案种群大小自适应方法的改进差分进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3844-3853. |
[3] | 高乾顺, 范纯龙, 李炎达, 滕一平. 基于差分进化的神经网络通用扰动生成方法[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3436-3442. |
[4] | 赵云涛, 谢万琪, 李维刚, 胡佳明. 基于协方差矩阵自适应进化策略的机器人手眼标定算法[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3225-3229. |
[5] | 聂青青, 万定生, 朱跃龙, 李致家, 姚成. 基于时域卷积网络的水文模型[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1756-1761. |
[6] | 史非凡, 史旭华. 基于参考向量的自适应约束多目标进化算法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 542-549. |
[7] | 代荣荣, 李宏慧, 付学良. 基于差分进化融合蚁群算法的数据中心流量调度机制[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3863-3869. |
[8] | 席雅睿, 乔志伟, 温静, 张艳娇, 杨雯晶, 闫慧文. 基于Chambolle-Pock算法框架的高阶TV图像重建算法[J]. 计算机应用, 2020, 40(6): 1793-1798. |
[9] | 施晓倩, 陈祺东, 孙俊, 冒钟杰. 变分布的量子行为粒子群优化算法求解工程约束优化问题[J]. 计算机应用, 2020, 40(5): 1382-1388. |
[10] | 赵志学, 李夏苗, 周鲜成. 考虑拥堵区域的多车型绿色车辆路径问题优化[J]. 计算机应用, 2020, 40(3): 883-890. |
[11] | 张鑫, 邹德旋, 沈鑫. 含交叉项的混合二范数粒子群优化算法[J]. 计算机应用, 2018, 38(8): 2148-2156. |
[12] | 刘宝, 董明刚, 敬超. 改进的排序变异多目标差分进化算法[J]. 计算机应用, 2018, 38(8): 2157-2163. |
[13] | 袁亦川, 杨洲, 罗廷兴, 秦进. 求解动态优化问题的多种群竞争差分进化算法[J]. 计算机应用, 2018, 38(5): 1254-1260. |
[14] | 李甲地, 马驰, 李德权, 王俊雅. 多个体切换网络分布式量化次梯度优化算法[J]. 计算机应用, 2018, 38(2): 509-515. |
[15] | 黄虹玮, 葛笑天, 陈烜松. 基于复杂学习分类系统的密度聚类方法[J]. 计算机应用, 2017, 37(11): 3207-3211. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||