[1] |
曾小牛,李夕海,刘继昊,等. 一种基于改进凸集投影原理的航空重力数据插值与去噪方法[J]. 武汉大学学报(信息科学版), 2020, 45(10): 1555-1562.
|
|
ZENG X N, LI X H, LIU J H, et al. Simultaneous interpolation and denoising method for airborne gravity data based on improved projection onto convex sets theory[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1555-1562.
|
[2] |
LEBLANC G E, MORRIS W A. Denoising of aeromagnetic data via the wavelet transform[J]. Geophysics, 2001, 66(6): 1793-1804.
|
[3] |
DE OLIVEIRA LYRIO J C S, TENORIO L, LI Y. Efficient automatic denoising of gravity gradiometry data[J]. Geophysics, 2004, 69(3): 772-782.
|
[4] |
ZHANG D, HUANG D, LU J, et al. Gravity gradient data filtering using translation invariant wavelet[J]. ASEG Extended Abstracts, 2016, 2016(1): 1-5.
|
[5] |
李宏. 地磁匹配导航航测地磁信号的小波去噪研究[D]. 西安: 长安大学, 2023: 33-51.
|
|
LI H. Research on wavelet denoising of aerial geomagnetism in geomagnetic matching navigation[D]. Xi’an: Chang’an University, 2023: 33-51.
|
[6] |
索奎,吕晓春,张贵宾,等. 基于二维小波能量阈值的重磁数据去噪算法[J]. 中国石油大学学报(自然科学版), 2022, 46(5): 36-45.
|
|
SUO K, LYU X C, ZHANG G B, et al. Denoising algorithm for gravity and magnetic data based on two-dimensional wavelet energy threshold[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(5): 36-45.
|
[7] |
李冬毅,覃方君,黄春福,等. 基于自寻优小波降噪算法的海洋重力数据滤波[J]. 中国惯性技术学报, 2023, 31(9): 883-889.
|
|
LI D Y, QIN F J, HUANG C F, et al. Marine gravity data filtering based on self-optimizing wavelet denoising algorithm[J]. Journal of Chinese Inertial Technology, 2023, 31(9): 883-889.
|
[8] |
WANG J, MENG X, GUO L, et al. A correlation-based approach for determining the threshold value of singular value decomposition filtering for potential field data denoising[J]. Journal of Geophysics and Engineering, 2014, 11(5): No.055007.
|
[9] |
阳前果. 基于深度学习的重磁数据处理研究[D]. 武汉:中国地质大学, 2021: 30-62.
|
|
YANG Q G. Research on gravity and magnetic data processing based on deep learning[D]. Wuhan: China University of Geosciences, 2021: 30-62.
|
[10] |
黄子炎,王庆宾,赵东明,等. 基于深度残差网络的重力数据去噪重构[J]. 中国惯性技术学报, 2021, 29(4): 443-450.
|
|
HUANG Z Y, WANG Q B, ZHAO D M, et al. Gravity data denoising and reconstruction based on deep residual network[J]. Journal of Chinese Inertial Technology, 2021, 29(4): 443-450.
|
[11] |
刘霞,孙英杰. 基于融合残差注意力机制的卷积神经网络地震信号去噪[J]. 吉林大学学报(地球科学版), 2023, 53(2): 609-621.
|
|
LIU X, SUN Y J. Seismic signal denoising based on convolutional neural network with residual and attention mechanism[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(2): 609-621.
|
[12] |
李从昀,朱亚洲,杨晓,等. 基于Noise-to-Noise自监督学习的地震数据去噪方法[J]. 地球物理学进展, 2023, 38(2): 662-676.
|
|
LI C Y, ZHU Y Z, YANG X, et al. Seismic data denoising method based on Noise-to-Noise self-supervised learning[J]. Progress in Geophysics, 2023, 38(2): 662-676.
|
[13] |
赵振聪,饶莹. 基于结构保护去噪神经网络的地震数据随机噪声压制[J]. 地球物理学报, 2024, 67(10): 3841-3850.
|
|
ZHAO Z C, RAO Y. Seismic random noise suppression based on SP-DnCNN neural network[J]. Chinese Journal of Geophysics, 2024, 67(10): 3841-3850.
|
[14] |
王洪洲. 基于深度学习的地震勘探数据去噪及速度模型反演技术研究[D]. 长春:吉林大学, 2024: 56-80.
|
|
WANG H Z. Research on deep learning-based seismic exploration data denoising and velocity model inversion[D]. Changchun: Jilin University, 2024: 56-80.
|
[15] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241.
|
[16] |
高好天,孙宁娜,孙可奕,等. DnCNN和U-Net对地震随机噪声压制的对比分析[J]. 地球物理学进展, 2021, 36(6): 2441-2453.
|
|
GAO H T, SUN N N, SUN K Y, et al. Comparative analysis of DnCNN and U-Net on suppression of seismic random noise[J]. Progress in Geophysics, 2021, 36(6): 2441-2453.
|
[17] |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
|
[18] |
ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155.
|
[19] |
LIU P, ZHANG H, LIAN W, et al. Multi-level wavelet convolutional neural networks[J]. IEEE Access, 2019, 7: 74973-74985.
|