[1] |
KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 3992-4003.
|
[2] |
王淼,黄智忠,何晖光,等. 分割一切模型SAM的潜力与展望:综述[J]. 中国图象图形学报, 2024, 29(6): 1479-1509.
|
|
WANG M, HUANG Z Z, HE H G, et al. Potential and prospects of segment anything model: a survey[J]. Journal of Image and Graphics, 2024, 29(6): 1479-1509.
|
[3] |
CHENG J, YE J, DENG Z, et al. SAM-Med 2D[EB/OL]. [2024-06-11]..
|
[4] |
JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-SEG: a segmented polyp dataset[C]// Proceedings of the 2020 International Conference on MultiMedia Modeling, LNCS 11962. Cham: Springer, 2020: 451-462.
|
[5] |
BERNAL J, SÁNCHEZ F J, FERNÁNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Computerized Medical Imaging and Graphics, 2015, 43: 99-111.
|
[6] |
TAJBKAKHSH N, GURUDU S R, LIANG J. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Transactions on Medical Imaging, 2016, 35(2): 630-644.
|
[7] |
RONNEBERGER O, FISHCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241.
|
[8] |
FAN D P, JI G P, ZHOU T, et al. PraNet: parallel reverse attention network for polyp segmentation[C]// Proceedings of the 2020 International Conference on Medical Image Computing and Computer Assisted Intervention, LNCS 12266. Cham: Springer, 2020: 263-273.
|
[9] |
CHEN J, LU Y, YU Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. [2024-06-11]..
|
[10] |
SHI W, XU J, GAO P. SSformer: a lightweight Transformer for semantic segmentation[C]// Proceedings of the IEEE 24th International Workshop on Multimedia Signal Processing. Piscataway: IEEE, 2022: 1-5.
|
[11] |
WEI J, HU Y, ZHANG R, et al. Shallow attention network for polyp segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 699-708.
|
[12] |
LIU Y, HAN T, MA S, et al. Summary of ChatGPT/GPT-4 research and perspective towards the future of large language models[J]. Meta-Radiology, 2023, 1(2): No.100017.
|
[13] |
CARON M, TOUVRON H, MISRA I, et al. Emerging properties in self-supervised vision Transformers[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9630-9640.
|
[14] |
WANG X, ZHANG X, CAO Y, et al. SegGPT: towards segmenting everything in context[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 1130-1140.
|
[15] |
MA J, HE Y, LI F. Segment anything in medical images[J]. Nature Communications, 2023, 15: No.654.
|
[16] |
WU J, WANG Z, HONG M, et al. Medical SAM adapter: adapting segment anything model for medical image segmentation[J]. Medical Image Analysis, 2025, 105: No.103547.
|
[17] |
HU M, LI Y, YANG X. SkinSAM: empowering skin cancer segmentation with segment anything model[EB/OL]. [2024-06-11]..
|
[18] |
LIN X, XIANG Y, ZHANG L, et al. Beyond adapting SAM: towards end-to-end ultrasound image segmentation via auto prompting[C]// Proceedings of the 2024 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2024: 24-34.
|
[19] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2024-06-11]..
|
[20] |
陈洛轩,林成创,郑招良,等. Transformer在计算机视觉场景下的研究综述[J]. 计算机科学, 2023, 50(12): 130-147.
|
|
CHEN L X, LIN C C, ZHENG Z L, et al. Review of Transformer in computer vision[J]. Computer Science, 2023, 50(12): 130-147.
|
[21] |
GHALATI M K, NUNES A, FERREIRA H, et al. Texture analysis and its applications in biomedical imaging: a survey[J]. IEEE Reviews in Biomedical Engineering, 2022, 15: 222-246.
|
[22] |
ALI H, SHARIF M, YASMIN M, et al. Color-based template selection for detection of gastric abnormalities in video endoscopy[J]. Biomedical Signal Processing and Control, 2020, 56: No.101668.
|
[23] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL 2019: 4171-4186.
|
[24] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
|
[25] |
MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]// Proceedings of the 4th International Conference on 3D Vision. Piscataway: IEEE, 2016: 565-571.
|
[26] |
RAHMAN M A, WANG Y. Optimizing intersection-over-union in deep neural networks for image segmentation[C]// Proceedings of the 2016 International Symposium on Visual Computing, LNCS 10072. Cham: Springer, 2016: 234-244.
|
[27] |
LOU A, GUAN S, KO H, et al. CaraNet: context axial reverse attention network for segmentation of small medical objects[C]// Proceedings of the SPIE 12032, Medical Imaging 2022: Image Processing. Bellingham, WA: SPIE, 2022: No.120320D.
|
[28] |
WANG J F, SONG S, WANG X K, et al. ProMISe: promptable medical image segmentation using SAM[EB/OL]. [2024-12-29]..
|