1 |
肖添文,徐永能,徐欣怡. 城市轨道交通隧道异物侵入检测与控制方法[J]. 电气技术, 2019, 20(S1): 48-52, 56.
|
|
XIAO T W, XU Y N, XU X Y. Methods for detecting and controlling foreign body invasion in urban rail transit tunnels[J]. Electrical Engineering, 2019, 20(S1): 48-52, 56.
|
2 |
宋晓凤. 基于结构光测量技术的铁路隧道口异物检测方法研究[D]. 北京:北京交通大学, 2020.
|
|
SONG X F. Study on the railway tunnel entrance obstacle detection method based on structured light measurement technology[D]. Beijing: Beijing Jiaotong University, 2020.
|
3 |
陈锴迪. 隧道线路异物检测系统研究[D]. 北京:北京交通大学, 2020.
|
|
CHEN K D. Research on foreign body detection system in tunnel line[D]. Beijing: Beijing Jiaotong University, 2020.
|
4 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision. Piscataway: IEEE, 2014: 580-587.
|
5 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37.
|
6 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
|
7 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2023-11-29]..
|
8 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2023-12-09]..
|
9 |
LI C Y, LI L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2023-12-09]..
|
10 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
|
11 |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
|
12 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
|
13 |
TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. [2023-09-10]..
|
14 |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
|
15 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
|
16 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
|
17 |
李文举,张干,崔柳,等. 基于坐标注意力的轻量级交通标志识别模型[J]. 计算机应用, 2023, 43(2): 608-614.
|
|
LI W J, ZHANG G, CUI L, et al. Lightweight traffic sign recognition model based on coordinate attention[J]. Journal of Computer Applications, 2023, 43(2): 608-614.
|
18 |
KOBYLINSKI P, WIERZBOWSKI M, PIOTROWSKI K. High-resolution net load forecasting for micro-neighbourhoods with high penetration of renewable energy sources[J]. International Journal of Electrical Power and Energy Systems, 2020, 117: No.105635.
|
19 |
ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586.
|
20 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018:3-19.
|
21 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
|