《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (2): 428-435.DOI: 10.11772/j.issn.1001-9081.2024020202
• 数据科学与技术 • 上一篇
收稿日期:
2024-02-29
修回日期:
2024-05-14
接受日期:
2024-05-17
发布日期:
2024-06-04
出版日期:
2025-02-10
通讯作者:
宋宝燕
作者简介:
张翰林(1993—),男,辽宁沈阳人,博士研究生,CCF会员,主要研究方向:时序图查询、机器学习基金资助:
Hanlin ZHANG, Junlu WANG, Baoyan SONG()
Received:
2024-02-29
Revised:
2024-05-14
Accepted:
2024-05-17
Online:
2024-06-04
Published:
2025-02-10
Contact:
Baoyan SONG
About author:
ZHANG Hanlin, born in 1993, Ph. D. candidate. His research interests include temporal graph query, machine learning.Supported by:
摘要:
时间序列分类是时间序列分析的基础。然而,现有的时间序列分类方法对应的形态特征并不能作为分类依据,且通道间的特征通过图上的单一权重刻画不够准确,导致分类精度不高。因此,提出一种融合衍生特征的时间序列事件分类方法(TSEC-FDF)。首先,在时间序列上构建时间序列事件集合后,根据每个时间序列事件构建突变图、协同图、启发图,以减少噪声对高维特征的干扰;其次,融合多图的特征作为衍生特征,并抽取时间序列事件的多个时间级别的特征;最后,提出一种融合衍生特征的多图卷积分类模型级联时间序列和图特征作为时间序列事件的高维特征。实验结果表明,与TF-C(Time-Frequency Consistency)和BiLSTM+隐马尔可夫模型(Bi-directional Long Short-Term Memory-Hidden Markov Model, BL-HMM)方法相比,TSEC-FDF在4个真实数据集上的准确率、精确率、查全率、F1值、AUROC(Area Under the Receiver Operating Characteristic curve)以及AUPRC(Area Under the Precision versus Recall Curve)至少提升了3.2%、4.7%、7.8%、6.3%、0.9%和2.2%。
中图分类号:
张翰林, 王俊陆, 宋宝燕. 融合衍生特征的时间序列事件分类方法[J]. 计算机应用, 2025, 45(2): 428-435.
Hanlin ZHANG, Junlu WANG, Baoyan SONG. Time series event classification method fused with derived features[J]. Journal of Computer Applications, 2025, 45(2): 428-435.
数据集 | 采用频率/Hz | 样本数 | 类别数 | 实例 长度/s | 数据集 大小/MB |
---|---|---|---|---|---|
SleepEEG | 100 | 60 000 | 5 | 30 | 1 484.8 |
HAR | 50 | 10 299 | 6 | 11 | 46.2 |
BD | 64 000 | 1 280 | 4 | 4 | 10 639.3 |
Earthquake | 10~40 | 1 156 | 4 | 120 | 116.5 |
表1 实验数据集信息
Tab. 1 Experimental dataset information
数据集 | 采用频率/Hz | 样本数 | 类别数 | 实例 长度/s | 数据集 大小/MB |
---|---|---|---|---|---|
SleepEEG | 100 | 60 000 | 5 | 30 | 1 484.8 |
HAR | 50 | 10 299 | 6 | 11 | 46.2 |
BD | 64 000 | 1 280 | 4 | 4 | 10 639.3 |
Earthquake | 10~40 | 1 156 | 4 | 120 | 116.5 |
模型 | 数据集 | 准确率 | 精确率 | 查全率 | F1值 | AUROC | AUPRC |
---|---|---|---|---|---|---|---|
TSEC-FDF | SleepEEG | 98.01 | 99.01 | 99.00 | 99.10 | 99.08 | 99.19 |
BD | 84.05 | 85.06 | 89.78 | 87.60 | 89.70 | 89.50 | |
HAR | 79.64 | 75.43 | 69.88 | 72.19 | 79.59 | 79.86 | |
Earthquake | 75.64 | 73.21 | 76.23 | 77.06 | 78.01 | 78.64 | |
KNN | SleepEEG | 85.25 | 86.39 | 64.31 | 67.91 | 64.34 | 62.79 |
BD | 67.66 | 65.00 | 68.21 | 64.42 | 81.90 | 52.31 | |
HAR | 75.34 | 74.39 | 76.38 | 73.28 | 74.09 | 77.28 | |
Earthquake | 29.94 | 31.01 | 27.51 | 28.33 | 45.29 | 50.17 | |
TF-C | SleepEEG | 94.95 | 94.56 | 89.08 | 91.49 | 98.11 | 97.03 |
BD | 78.24 | 79.82 | 80.11 | 79.91 | 90.52 | 78.61 | |
HAR | 75.29 | 71.08 | 67.23 | 68.22 | 70.31 | 76.19 | |
Earthquake | 68.34 | 65.36 | 61.24 | 63.31 | 68.77 | 69.13 | |
BL-HMM | SleepEEG | 90.74 | 92.39 | 91.77 | 93.21 | 95.34 | 92.19 |
BD | 61.29 | 58.18 | 59.87 | 62.31 | 65.98 | 71.39 | |
HAR | 61.30 | 58.94 | 57.61 | 62.04 | 65.49 | 66.99 | |
Earthquake | 61.57 | 62.39 | 59.71 | 58.66 | 60.39 | 62.60 | |
LB-SimTSC | SleepEEG | 67.13 | 69.06 | 64.88 | 72.87 | 69.35 | 74.56 |
BD | 56.29 | 49.36 | 51.71 | 56.73 | 54.00 | 57.09 | |
HAR | 51.60 | 52.77 | 48.19 | 50.61 | 51.45 | 53.16 | |
Earthquake | 41.30 | 40.23 | 45.76 | 48.73 | 48.61 | 49.77 |
表2 不同数据集上5个模型的准确率等指标的对比结果 (%)
Tab. 2 Comparison results of accuracy and other indicators of five models on different datasets
模型 | 数据集 | 准确率 | 精确率 | 查全率 | F1值 | AUROC | AUPRC |
---|---|---|---|---|---|---|---|
TSEC-FDF | SleepEEG | 98.01 | 99.01 | 99.00 | 99.10 | 99.08 | 99.19 |
BD | 84.05 | 85.06 | 89.78 | 87.60 | 89.70 | 89.50 | |
HAR | 79.64 | 75.43 | 69.88 | 72.19 | 79.59 | 79.86 | |
Earthquake | 75.64 | 73.21 | 76.23 | 77.06 | 78.01 | 78.64 | |
KNN | SleepEEG | 85.25 | 86.39 | 64.31 | 67.91 | 64.34 | 62.79 |
BD | 67.66 | 65.00 | 68.21 | 64.42 | 81.90 | 52.31 | |
HAR | 75.34 | 74.39 | 76.38 | 73.28 | 74.09 | 77.28 | |
Earthquake | 29.94 | 31.01 | 27.51 | 28.33 | 45.29 | 50.17 | |
TF-C | SleepEEG | 94.95 | 94.56 | 89.08 | 91.49 | 98.11 | 97.03 |
BD | 78.24 | 79.82 | 80.11 | 79.91 | 90.52 | 78.61 | |
HAR | 75.29 | 71.08 | 67.23 | 68.22 | 70.31 | 76.19 | |
Earthquake | 68.34 | 65.36 | 61.24 | 63.31 | 68.77 | 69.13 | |
BL-HMM | SleepEEG | 90.74 | 92.39 | 91.77 | 93.21 | 95.34 | 92.19 |
BD | 61.29 | 58.18 | 59.87 | 62.31 | 65.98 | 71.39 | |
HAR | 61.30 | 58.94 | 57.61 | 62.04 | 65.49 | 66.99 | |
Earthquake | 61.57 | 62.39 | 59.71 | 58.66 | 60.39 | 62.60 | |
LB-SimTSC | SleepEEG | 67.13 | 69.06 | 64.88 | 72.87 | 69.35 | 74.56 |
BD | 56.29 | 49.36 | 51.71 | 56.73 | 54.00 | 57.09 | |
HAR | 51.60 | 52.77 | 48.19 | 50.61 | 51.45 | 53.16 | |
Earthquake | 41.30 | 40.23 | 45.76 | 48.73 | 48.61 | 49.77 |
模型 | 对比模型 | 准确率 | 精确率 | 查全率 | F1值 | AUROC | AUPRC |
---|---|---|---|---|---|---|---|
TSEC-FDF | KNN | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.000 |
TF-C | 0.453 | 0.534 | 0.294 | 0.464 | 0.434 | 0.443 | |
BL-HMM | 0.011 | 0.019 | 0.031 | 0.036 | 0.014 | 0.026 | |
LB-SimTSC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
KNN | TSEC-FDF | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.000 |
TF-C | 0.014 | 0.013 | 0.012 | 0.008 | 0.009 | 0.001 | |
BL-HMM | 0.528 | 0.433 | 0.152 | 0.178 | 0.346 | 0.053 | |
LB-SimTSC | 0.085 | 0.145 | 0.303 | 0.545 | 0.063 | 0.341 | |
TF-C | TSEC-FDF | 0.453 | 0.534 | 0.294 | 0.464 | 0.434 | 0.443 |
KNN | 0.014 | 0.013 | 0.012 | 0.008 | 0.009 | 0.001 | |
BL-HMM | 0.062 | 0.076 | 0.251 | 0.159 | 0.082 | 0.132 | |
LB-SimTSC | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | |
BL-HMM | TSEC-FDF | 0.011 | 0.019 | 0.031 | 0.036 | 0.014 | 0.026 |
KNN | 0.528 | 0.433 | 0.152 | 0.178 | 0.346 | 0.053 | |
TF-C | 0.062 | 0.076 | 0.251 | 0.159 | 0.082 | 0.132 | |
LB-SimTSC | 0.021 | 0.028 | 0.016 | 0.054 | 0.007 | 0.005 | |
LB-SimTSC | TSEC-FDF | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
KNN | 0.085 | 0.145 | 0.303 | 0.545 | 0.063 | 0.341 | |
TF-C | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | |
BL-HMM | 0.021 | 0.028 | 0.016 | 0.054 | 0.007 | 0.005 |
表3 不同模型间在不同实验指标下的T测试分析(α<0.05时显著)
Tab. 3 T-test analysis among different models on different experimental indicators(α<0.05 means remarkable)
模型 | 对比模型 | 准确率 | 精确率 | 查全率 | F1值 | AUROC | AUPRC |
---|---|---|---|---|---|---|---|
TSEC-FDF | KNN | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.000 |
TF-C | 0.453 | 0.534 | 0.294 | 0.464 | 0.434 | 0.443 | |
BL-HMM | 0.011 | 0.019 | 0.031 | 0.036 | 0.014 | 0.026 | |
LB-SimTSC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
KNN | TSEC-FDF | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.000 |
TF-C | 0.014 | 0.013 | 0.012 | 0.008 | 0.009 | 0.001 | |
BL-HMM | 0.528 | 0.433 | 0.152 | 0.178 | 0.346 | 0.053 | |
LB-SimTSC | 0.085 | 0.145 | 0.303 | 0.545 | 0.063 | 0.341 | |
TF-C | TSEC-FDF | 0.453 | 0.534 | 0.294 | 0.464 | 0.434 | 0.443 |
KNN | 0.014 | 0.013 | 0.012 | 0.008 | 0.009 | 0.001 | |
BL-HMM | 0.062 | 0.076 | 0.251 | 0.159 | 0.082 | 0.132 | |
LB-SimTSC | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | |
BL-HMM | TSEC-FDF | 0.011 | 0.019 | 0.031 | 0.036 | 0.014 | 0.026 |
KNN | 0.528 | 0.433 | 0.152 | 0.178 | 0.346 | 0.053 | |
TF-C | 0.062 | 0.076 | 0.251 | 0.159 | 0.082 | 0.132 | |
LB-SimTSC | 0.021 | 0.028 | 0.016 | 0.054 | 0.007 | 0.005 | |
LB-SimTSC | TSEC-FDF | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
KNN | 0.085 | 0.145 | 0.303 | 0.545 | 0.063 | 0.341 | |
TF-C | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | |
BL-HMM | 0.021 | 0.028 | 0.016 | 0.054 | 0.007 | 0.005 |
1 | KAUR P, JOSHI J C, AGGARWAL P. A Multi-Model Decision Support System (MM-DSS) for avalanche hazard prediction over North-West Himalaya[J]. Natural Hazards, 2022, 110(1): 563-585. |
2 | ELDELE E, CHEN Z, LIU C, et al. An attention-based deep learning approach for sleep stage classification with single-channel EEG[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 809-818. |
3 | LIU J, PAN C, LEI F, et al. Fault prediction of bearings based on LSTM and statistical process analysis[J]. Reliability Engineering and System Safety, 2021, 214: No.107646. |
4 | JAIN P K, TIWARI A K. Heart monitoring systems: a review[J]. Computers in Biology and Medicine, 2014, 54: 1-13. |
5 | YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 3634-3640. |
6 | CHAI D, WANG L, YANG Q. Bike flow prediction with multi-graph convolutional networks[C]// Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2018: 397-400. |
7 | 宋凌云,马卓源,李战怀,等. 面向金融风险预测的时序图神经网络综述[J]. 软件学报, 2024, 35(8):3897-3922. |
SONG L Y, MA Z Y, LI Z H, et al. Review on temporal graph neural networks for financial risk prediction[J]. Journal of Software, 2024, 35(8):3897-3922. | |
8 | WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 4-24. |
9 | JIA Z, LIN Y, WANG J, et al. Multi-view spatial-temporal graph convolutional networks with domain generalization for sleep stage classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 1977-1986. |
10 | JIA Z, LIN Y, WANG J, et al. GraphSleepNet: adaptive spatial-temporal graph convolutional networks for sleep stage classification[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2020: 1324-1330. |
11 | ZAIDI T F, FAROOQ O. EEG sub-bands based sleep stages classification using Fourier Synchrosqueezed transform features[J]. Expert Systems with Applications, 2023, 212: No.118752. |
12 | DUAN Z, XU H, WANG Y, et al. Multivariate time-series classification with hierarchical variational graph pooling[J]. Neural Networks, 2022, 154: 481-490. |
13 | XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[EB/OL]. [2024-05-08].. |
14 | ZHANG X, ZEMAN M, TSILIGKARIDIS T, et al. Graph-guided network for irregularly sampled multivariate time series[EB/OL]. [2024-05-08].. |
15 | ZHANG X, ZHAO Z, TSILIGKARIDIS T, et al. Self-supervised contrastive pre-training for time series via time-frequency consistency[C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 3988-4003. |
16 | XI L, YUN Z, LIU H, et al. Semi-supervised time series classification model with self-supervised learning[J]. Engineering Applications of Artificial Intelligence, 2022, 116: No.105331. |
17 | XI W, JAIN A, ZHANG L, et al. LB-SimTSC: an efficient similarity-aware graph neural network for semi-supervised time series classification[EB/OL]. [2024-05-08].. |
18 | BRAEI M, WAGNER S. Anomaly detection in univariate time-series: a survey on the state-of-the-art[EB/OL]. [2024-05-08].. |
19 | ZOVKO I I. Topics in market microstructure[M]. Amsterdam: Amsterdam University Press, 2008:13-17. |
20 | 肖国庆,李雪琪,陈玥丹,等. 大规模图神经网络研究综述[J]. 计算机学报, 2024, 47(1):148-171. |
XIAO G Q, LI X Q, CHEN Y D, et al. A survey of large-scale graph neural networks[J]. Chinese Journal of Computers, 2024, 47(1):148-171. | |
21 | KELLER J M, GRAY M R, GIVENS J A. A fuzzy k-nearest neighbor algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15(4): 580-585. |
22 | GHIMATGAR H, KAZEMI K, HELFROUSH M S, et al. Neonatal EEG sleep stage classification based on deep learning and HMM[J]. Journal of Neural Engineering, 2020, 17(3): No.036031. |
23 | ELDELE E, RAGAB M, CHEN Z, et al. Time-series representation learning via temporal and contextual contrasting[C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2021: 2352-2359. |
[1] | 张春雪, 仇丽青, 孙承爱, 荆彩霞. 基于两阶段动态兴趣识别的购买行为预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2365-2371. |
[2] | 顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625. |
[3] | 姚迅, 秦忠正, 杨捷. 生成式标签对抗的文本分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1781-1785. |
[4] | 沈君凤, 周星辰, 汤灿. 基于改进的提示学习方法的双通道情感分析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1796-1806. |
[5] | 王星, 刘贵娟, 陈志豪. 高斯混合模型与文本图卷积网络结合的虚假评论识别算法[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 360-368. |
[6] | 郭晓, 陈艳平, 唐瑞雪, 黄瑞章, 秦永彬. 融合行为词的罪名预测多任务学习模型[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 159-166. |
[7] | 李豆豆, 李汪根, 夏义春, 束阳, 高坤. 基于特征交互与自适应融合的骨骼动作识别[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2581-2587. |
[8] | 何嘉明, 杨巨成, 吴超, 闫潇宁, 许能华. 基于多模态图卷积神经网络的行人重识别方法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2182-2189. |
[9] | 樊小宇, 蔺素珍, 王彦博, 刘峰, 李大威. 基于残差图卷积神经网络的高倍欠采样核磁共振图像重建算法[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1261-1268. |
[10] | 陈容均, 严宣辉, 杨超城. 面向时间序列的混合图像化循环胶囊分类网络[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 692-699. |
[11] | 王若莹, 吕凡, 赵柳清, 胡伏原. 融合用户需求和边界约束的平面图生成算法[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 575-582. |
[12] | 席志红, 温家旭. 基于目标检测的室内动态场景定位与建图[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2853-2857. |
[13] | 玄英律, 万源, 陈嘉慧. 基于多尺度卷积和注意力机制的LSTM时间序列分类[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2343-2352. |
[14] | 陈浩杰, 范江亭, 刘勇. 深度强化学习解决动态旅行商问题[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1194-1200. |
[15] | 李晓杰, 崔超然, 宋广乐, 苏雅茜, 吴天泽, 张春云. 基于时序超图卷积神经网络的股票趋势预测方法[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 797-803. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||