1 |
邓依依,邬昌兴,魏永丰,等. 基于深度学习的命名实体识别综述[J]. 中文信息学报, 2021, 35(9):30-45.
|
|
DENG Y Y, WU C X, WEI Y F, et al. A survey on named entity recognition based on deep learning[J]. Journal of Chinese Information Processing, 2021, 35(9): 30-45.
|
2 |
冯艳红,于红,孙庚,等. 基于BLSTM的命名实体识别方法[J]. 计算机科学, 2018, 45(2):261-268.
|
|
FENG Y H, YU H, SUN G, et al. Named entity recognition method based on BLSTM[J]. Computer Science, 2018, 45(2): 261-268.
|
3 |
LIU Y, MENG F, ZHANG J, et al. GCDT: a global context enhanced deep transition architecture for sequence labeling[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 2431-2441.
|
4 |
SANTURKAR S, TSIPRAS D, ILYAS A, et al. How does batch normalization help optimization?[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 2488-2498.
|
5 |
范西朋,刘云飞,李盛阳,等. 基于MRC动态数据生成的命名实体识别方法[J]. 中文信息学报, 2023, 37(6):104-114.
|
|
FAN X P, LIU Y F, LI S Y, et al. A MRC dynamic data generation method for NER tasks[J]. Journal of Chinese Information Processing, 2023, 37(6): 104-114.
|
6 |
ZHANG Y, WEI X S, ZHOU B, et al. Bag of tricks for long-tailed visual recognition with deep convolutional neural networks[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 3447-3455.
|
7 |
BIKEL D M, MILLER S, SCHWARTZ R, et al. Nymble: a high-performance learning name-finder[C]// Proceedings of the 5th Conference on Applied Natural Language Processing. Stroudsburg: ACL, 1997: 194-201.
|
8 |
BIKEL D M, SCHWARTZ R, WEISCHEDEL R M. An algorithm that learns what's in a name[J]. Machine Learning, 1999, 34(1/2/3): 211-231.
|
9 |
LAFFERTY J, McCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the 18th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc., 2001: 282-289.
|
10 |
SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681.
|
11 |
ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 1554-1564.
|
12 |
LI X, YAN H, QIU X, et al. FLAT: Chinese NER using flat-lattice Transformer[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6836-6842.
|
13 |
MA R, PENG M, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5951-5960.
|
14 |
蔡宇翔,骆妲,甘洋镭,等.基于跨度边界感知的嵌套命名实体识别[J].软件学报,2024,35(11):5149-5162.
|
|
CAI Y X, LUO D, GAN Y L, et al. Nested named entity recognition based on span boundary perception[J]. Journal of Software, 2024, 35(11): 5149-5162.
|
15 |
YU J, BOHNET B, POESIO M. Named entity recognition as dependency parsing[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6470-6476.
|
16 |
SHEN Y, MA X, TAN Z, et al. Locate and label: a two-stage identifier for nested named entity recognition[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 2782-2794.
|
17 |
ZHU E, LI J. Boundary smoothing for named entity recognition[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 7096-7108.
|
18 |
HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. [2023-09-29]..
|
19 |
YAN H, GUI T, DAI J, et al. A unified generative framework for various NER subtasks[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 5808-5822.
|
20 |
YUAN Z, TAN C, HUANG S, et al. Fusing heterogeneous factors with triaffine mechanism for nested named entity recognition[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 3174-3186.
|
21 |
LI J, FEI H, LIU J, et al. Unified named entity recognition as word-word relation classification[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 10965-10973.
|
22 |
SHEN Y, SONG K, TAN X, et al. DiffusionNER: boundary diffusion for named entity recognition[C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2023: 3875-3890.
|
23 |
WANG S, SUN X, LI X, et al. GPT-NER: named entity recognition via large language models[EB/OL]. [2024-05-07]..
|
24 |
LIU R, WEI J, JIA C, et al. Modulating language models with emotions[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 4332-4339.
|
25 |
LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 21002-21012.
|