[1] |
NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system [EB/OL]. [2024-04-26]. .
|
[2] |
BUTERIN V. A next-generation smart contract and decentralized application platform [EB/OL]. [2024-04-26]. .
|
[3] |
BENET J. IPFS — content addressed, versioned, P2P file system (DRAFT 3) [EB/OL]. [2024-04-26]. .
|
[4] |
KOKORIS-KOGIAS E, JOVANOVIC P, GASSER L, et al. OmniLedger: a secure, scale-out, decentralized ledger via sharding [C]// Proceedings of the 2018 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2018: 583-598.
|
[5] |
ZHOU Q, HUANG H, ZHENG Z. Solutions to scalability of blockchain: a survey [J]. IEEE Access, 2020, 8: 16440-16455.
|
[6] |
KLARMAN U, BASU S, KUZMANOVIC A, et al. BloXroute: a scalable trustless blockchain distribution network whitepaper [EB/OL]. [2024-04-26]. .
|
[7] |
POON J, DRYJA T. The bitcoin lightning network: scalable off-chain instant payments [EB/OL]. [2024-04-26]. .
|
[8] |
network Raiden. What is the Raiden network? [EB/OL]. [2024-04-26]. .
|
[9] |
BACK A, CORALLO M, DASHJR L, et al. Enabling blockchain innovations with pegged sidechains [EB/OL]. [2024-04-26]. .
|
[10] |
KWON J, BUCHMAN E. Cosmos whitepaper: a network of distributed ledgers [EB/OL]. [2024-04-26]. .
|
[11] |
WOOD G. Polkadot: vision for a heterogeneous multi-chain framework [EB/OL]. [2024-04-26]. .
|
[12] |
THIBAULT L T, SARRY T, HAFID A S. Blockchain scaling using rollups: a comprehensive survey [J]. IEEE Access, 2022, 10: 93039-93054.
|
[13] |
CORBETT J C, DEAN J, EPSTEIN M, et al. Spanner: Google’s globally distributed database [J]. ACM Transactions on Computer Systems, 2013, 31(3): No.8.
|
[14] |
MILLER A, XIA Y, CROMAN K, et al. The honey badger of BFT protocols [C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 31-42.
|
[15] |
宋传罡,李雷孝,高昊昱.区块链系统性能优化关键方法综述[J].计算机工程与应用,2023, 59(16): 16-30.
|
|
SONG C G, LI L X, GAO H Y. Review of key technologies for blockchain system performance optimization [J]. Computer Engineering and Applications, 2023, 59(16): 16-30.
|
[16] |
LUU L, NARAYANAN V, ZHENG C, et al. A secure sharding protocol for open blockchains [C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 17-30.
|
[17] |
黄华威,孔伟,彭肖文,等.区块链分片技术综述[J].计算机工程,2022, 48(6): 1-10.
|
|
HUANG H W, KONG W, PENG X W, et al. Survey on blockchain sharding technology [J]. Computer Engineering, 2022, 48(6): 1-10.
|
[18] |
ZHANG S, LEE J H. Double-spending with a Sybil attack in the bitcoin decentralized network [J]. IEEE Transactions on Industrial Informatics, 2019, 15(10): 5715-5722.
|
[19] |
CASTRO M, LISKOV B. Practical Byzantine fault tolerance [C]// Proceedings of the 3rd USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX Association, 1999: 173-186.
|
[20] |
KOGIAS E K, JOVANOVIC P, GAILLY N, et al. Enhancing bitcoin security and performance with strong consistency via collective signing [C]// Proceedings of the 25th USENIX Security Symposium. Berkeley: USENIX Association, 2016: 279-296.
|
[21] |
SYTA E, JOVANOVIC P, KOGIAS E K, et al. Scalable bias-resistant distributed randomness [C]// Proceedings of the 2017 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2017: 444-460.
|
[22] |
GILAD Y, HEMO R, MICALI S, et al. Algorand: scaling Byzantine agreements for cryptocurrencies [C]// Proceedings of the 26th Symposium on Operating Systems Principles. New York: ACM, 2017: 51-68.
|
[23] |
ZAMANI M, MOVAHEDI M, RAYKOVA M. RapidChain: scaling blockchain via full sharding [C]// Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 931-948.
|
[24] |
WANG J, WANG H. Monoxide: scale out blockchains with asynchronous consensus zones [C]// Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2019: 95-112.
|
[25] |
CHEN H, WANG Y. SSChain: a full sharding protocol for public blockchain without data migration overhead [J]. Pervasive and Mobile Computing, 2019, 59: No.101055.
|
[26] |
DANG H, DINH T T A, LOGHIN D, et al. Towards scaling blockchain systems via sharding [C]// Proceedings of the 2019 International Conference on Management of Data. New York: ACM, 2019: 123-140.
|
[27] |
McKEEN F, ALEXANDROVICH I, BERENZON A, et al. Innovative instructions and software model for isolated execution [C]// Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy. New York: ACM, 2013: No.10.
|
[28] |
ANDROULAKI E, BARGER A, BORTNIKOV V, et al. Hyperledger Fabric: a distributed operating system for permissioned blockchains [C]// Proceedings of the 13th EuroSys Conference. New York: ACM, 2018: No.30.
|
[29] |
AMIRI M J, AGRAWAL D, El ABBADI A. SharPer: sharding permissioned blockchains over network clusters [C]// Proceedings of the 2021 International Conference on Management of Data. New York: ACM, 2021: 76-88.
|
[30] |
ZHENG P, XU Q, ZHENG Z, et al. Meepo: sharded consortium blockchain [C]// Proceedings of the IEEE 37th International Conference on Data Engineering. Piscataway: IEEE, 2021: 1847-1852.
|
[31] |
HONG Z, GUO S, ZHOU E, et al. GriDB: scaling blockchain database via sharding and off-chain cross-shard mechanism [J]. Proceedings of the VLDB Endowment, 2023, 16(7): 1685-1698.
|
[32] |
CAI T, CHEN W, ZHANG J, et al. SmartChain: a dynamic and self-adaptive sharding framework for IoT blockchain [J]. IEEE Transactions on Services Computing, 2024, 17(2): 674-688.
|
[33] |
ZHENG P, ZHENG Z, WU J, et al. XBlock-ETH: extracting and exploring blockchain data from Ethereum [J]. IEEE Open Journal of the Computer Society, 2020, 1: 95-106.
|