计算机应用 ›› 2013, Vol. 33 ›› Issue (02): 382-399.DOI: 10.3724/SP.J.1087.2013.00382

• 网络与通信 • 上一篇    下一篇

光网络中基于小波变换的链路故障监测算法

熊余1,2,刘晓清2,彭海英2,王汝言2   

  1. 1. 重庆大学 计算机学院,重庆 400044
    2. 重庆邮电大学 重庆光纤通信技术重点实验室,重庆 400065
  • 收稿日期:2012-08-08 修回日期:2012-09-25 出版日期:2013-02-01 发布日期:2013-02-25
  • 通讯作者: 刘晓清
  • 作者简介:熊余(1982-),男,四川资中人,讲师,博士研究生,CCF会员,主要研究方向:宽带网络可靠性理论及抗毁技术;
    刘晓清(1986-),女,重庆人,硕士研究生,主要研究方向:光通信网络故障管理;
    彭海英(1973-),女,四川广安人,副教授,硕士,主要研究方向:下一代互联网、光交换;
    王汝言(1969-),男,湖北浠水人,教授,博士,CCF会员,主要研究方向:全光网络、下一代光网络故障管理机制、多媒体信息处理。
  • 基金资助:
    国家自然科学基金资助项目;国家自然科学基金资助项目;重庆市教委科学技术研究项目;重庆市教委科学技术研究项目(KJ110531)

Link fault monitoring in optical networks based on wavelet transform

XIONG Yu1,2,LIU Xiaoqing1,PENG Haiying1,WANG Ruyan1   

  1. 1. Chongqing Key Laboratory of Optical Fiber Communication, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    2. College of Computer Science, Chongqing University, Chongqing 400044, China
  • Received:2012-08-08 Revised:2012-09-25 Online:2013-02-01 Published:2013-02-25
  • Contact: LIU Xiaoqing

摘要: 针对光网络中传统故障监测方法误差大、速度慢等问题,提出一种基于小波变换的链路故障监测算法。在该算法中采用动态周期轮询的方法监测链路光功率,利用小波变换在时—频域上的良好局部特性提取监测值中的故障信息。算法对监测到的光功率值进行多尺度分解以降低噪声影响,从而提高故障监测的准确性。仿真结果表明,与时域的分析方法相比,基于小波变换的故障监测算法能够较好地克服噪声影响,漏警率减少到0,误警率降低了5百分点;而且实验环境下的故障监测时间为2.53~3.12ms,能够满足实时需要。

关键词: 光网络, 小波变换, 故障监测, 光功率, 奇异性监测

Abstract: The traditional fault monitoring methods have some problems such as great deviation and slow speed. To solve these problems, a link fault monitoring algorithm based on the wavelet transform was presented. This algorithm used the dynamic polling scheme to detect the optical power and used the local characteristic in time-frequency domain of the wavelet transform to extract the fault information from the detection value. The monitoring optical power value was decomposed with multi-scale to eliminate the effects of noise, thereby improving the accuracy of the fault monitoring. The experimental results show that compared to the analytucal methods in time domain, the proposed fault monitoring algorithm based on wavelet transform is better to overcome the effects of noise. The leakage alarm rate is reduced to zero and the false alarm rate is decreased by five percentage. The monitoring time is between 2.53ms and 3.12ms, which can meet the real-time requirement.

Key words: optical network, wavelet transform, fault monitoring, optical power, singularity monitoring

中图分类号: