计算机应用 ›› 2015, Vol. 35 ›› Issue (3): 863-867.DOI: 10.11772/j.issn.1001-9081.2015.03.863

• 虚拟现实与数字媒体 • 上一篇    下一篇

基于Radon小波低分辨率的织物疵点检测算法

朱中洋1, 肖志云1, 孙光民2, 齐咏生1   

  1. 1. 内蒙古工业大学 电力学院, 呼和浩特 010080;
    2. 北京工业大学 电子信息与控制工程学院, 北京 100022
  • 收稿日期:2014-10-17 修回日期:2014-11-14 出版日期:2015-03-10 发布日期:2015-03-13
  • 通讯作者: 肖志云
  • 作者简介:朱中洋(1988-),男,北京密云人,硕士研究生,主要研究方向:图像处理、模式识别;肖志云(1974-),男,湖南嘉禾人,副教授,博士,主要研究方向:图像处理、视频处理、多尺度分析及应用;孙光民(1960-),男,山西闻喜人,教授,博士,主要研究方向:神经网络、人工智能与模式识别、信号处理、图像处理
  • 基金资助:

    国家自然科学基金资助项目(61364009);国家自然科学基金青年项目(61305026);北京教委科学研究计划资助项目(KM201310005006);内蒙古自治区研究生科研创新资助项目(S20141012806);内蒙古工业大学中青年学术骨干培养计划资助项目

Fabric defect detection algorithm based on Radon-wavelet low resolution

ZHU Zhongyang1, XIAO Zhiyun1, SUN Guangmin2, QI Yongsheng1   

  1. 1. College of Electric Power, Inner Mongolia University of Technology, Hohhot Inner Mongolia 010080, China;
    2. College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100022, China
  • Received:2014-10-17 Revised:2014-11-14 Online:2015-03-10 Published:2015-03-13

摘要:

针对纺织过程中可能出现的瑕疵问题,提出了一种新的织物疵点分割方法——四分法和织物疵点特征提取方法——Radon小波低分辨率特征(RWLRC)。该算法先将织物图像经过Gabor滤波器预处理,再将预处理之后的织物图像等分成四部分,通过4部分的最大值与最小值确定阈值并分割。将疵点形状的二值图像进行Radon变换并得到特征曲线,应用Mallat塔式分解算法进行特征降维,最后由神经网络进行状态识别和特征分类。实验结果表明,四分法无需与正常织物对照分割,具有自适应性,Radon小波低分辨率特征的特征值只有3维,具有特征维数低、疵点形状描述准确等特点,所提方法可以有效检测与识别缺纬、缺经、油污、漏洞等常见疵点。

关键词: 疵点检测与识别, 四分法, Radon小波低分辨率特征, Gabor滤波器, 神经网络

Abstract:

In view of the problems in the textile process, a novel fabric defect segmentation method-quartering method and a fabric defect feature extraction method-Radon Wavelet Low Resolution Characteristic (RWLRC) was presented, which were respectively used for fabric defect detection and classification. According to this method, the fabric image was preprocessed by using Gabor filter, and then the fabric image was divided into four parts, the threshold for segmenting the fabric defect was determined by four parts' maximum value and minimum value. After that the Radon transform was used to binary image and characteristic curve was got. Meanwhile Mallat pyramidal decomposition algorithm was used for feature dimension reduction. Finally, the neural network was used to the state recognition and characteristic classification. The experimental results show that quartering method does not need to contrast with the other normal fabric images and has good adaptability. RWLRC only has three eigenvalues and has the characteristics of low dimension and accurate description of defect shape, the proposed method can efficiently inspect and recognize four common fabric defects:weft-lacking, warp-lacking, oil stains and holes.

Key words: fabric defect detection and classification, quartering method, Radon Wavelet Low Resolution Characteristic (RWLRC), Gabor filter, neural network

中图分类号: