[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356. [2] SARAH V, LYNN D, YVAN S, et al. Applications of fuzzy rough set theory in machine learning:a survey[J]. Fundamenta Informaticae, 2015, 142(1/2/3/4):53-86. [3] RAHMAN A, MUHAMMAD H S, SUNGYOUNG L. Rough set-based approaches for discretization:a compact review[J]. Artificial Intelligence Review, 2015, 44(2):235-263. [4] WANG D L, SONG X F, YUAN J Y. Forecasting core business transformation risk using the optimal rough set and the neural network[J]. Journal of Forecasting, 2015, 34(6):478-491. [5] CHEN L F, CHIHTSUNG T. Data mining framework based on rough set theory to improve location selection decisions:a case study of a restaurant chain[J].Tourism Management, 2016, 53:197-206. [6] JENSEN R, SHEN Q. Semantics-preserving dimensionality reduction:rough and fuzzy-rough-based approaches[J]. IEEE Transactions On Knowledge and Data Engineering, 2004, 16(12):1457-1471. [7] LIN T Y. Granular computing on binary relations[C]//RSCTC 2002:Proceedings of the Third International Conference on Rough Sets and Current Trends in Computing. Berlin:Springer, 2002:296-299. [8] 胡清华,于达仁,谢宗霞.基于邻域粒化和粗糙逼近的数值属性约简[J].软件学报,2008,19(3):640-649.(HU Q H, YU D R, XIE Z X. Numerical attribute reduction based on neighborhood granulation and rough approximation[J]. Journal of Software, 2008, 19(3):640-649.) [9] XIE J, SHEN X F, LIU H F, et al. Research on an incremental attribute reduction based on relative positive region[J]. Journal of Computational Information Systems, 2013, 9(16):6621-6628. [10] WANG C R, QU F F. An attribute reduction algorithm in rough set theory based on information entropy[C]//Proceedings of the 2008 International Symposium on Computational Intelligence and Design. Washington, DC:IEEE Computer Society, 2008:3-6. [11] HU Q H, ZHANG L, ZHANG D, et al. Measuring relevance between discrete and continuous features based on neighborhood mutual information[J]. Expert Systems with Applications, 2011, 38(9):10737-10750. [12] CHEN Y M, WU K S, CHEN X H, et al. An entropy-based uncertainty measurement approach in neighborhood systems[J]. Information Sciences, 2014, 279:239-250. [13] DAI J H. Rough set approach to incomplete numerical data[J]. Information Sciences, 2013, 241:43-57. [14] LIANG J, SHI Z, LI D, et al. Information entropy, rough entropy and knowledge granulation in incomplete information systems[J]. International Journal of General Systems, 2006, 35(6):641-654. [15] QIAN Y H, LIANG J Y, PEDRYCZ W, et al. An efficient accelerator for attribute reduction from incomplete data in rough set framework[J]. Pattern Recognition, 2011, 44(8):1658-1670. [16] 罗豪,续欣莹,谢珺,等.基于扩展容差关系的不完备信息系统属性约简[J].计算机应用,2016,36(11):2958-2962.(LUO H, XU X Y, XIE J, et al. Attribute reduction in incomplete information systems based on extended tolerance relation[J]. Journal of Computer Applications, 2016, 36(11):2958-2962.) [17] WANG G Y, GUAN L H, WU W Z, et al. Data-driven valued tolerance relation based on the extended rough set[J]. Fundamenta Informaticae, 2014, 132(3):349-363. [18] 姚晟,徐风,赵鹏,等.基于邻域量化容差关系粗糙集模型的特征选择算法[J].模式识别与人工智能,2017,30(5):416-428.(YAO S, XU F, ZHAO P, et al. Feature selection algorithm based on neighborhood valued tolerance relation rough set model[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(5):416-428.) [19] 何松华,康婵娟,鲁敏,等.基于邻域组合测度的属性约简方法[J].控制与决策,2016,31(7):1225-1230.(HE S H, KANG C J, LU M, et al. Attribute reduction method based on neighborhood combination measure[J]. Control and Decision, 2016, 31(7):1225-1230.) [20] 王国胤,于洪,杨大春.基于条件信息熵的决策表约简[J].计算机学报,2002,25(7):759-766.(WANG G Y, YU H, YANG D C. Decision table reduction based on conditional information entropy[J]. Chinese Journal of Computers, 2002, 25(7):759-766.) [21] 江峰,王莎莎,杜军威,等.基于近似决策熵的属性约简[J].控制与决策,2015,30(1):65-70.(JIANG F, WANG S S, DU J W, et al. Attribute reduction based on approximation decision entropy[J]. Control and Decision, 2015, 30(1):65-70.) [22] 黄国顺,文翰.基于边界域和知识粒度的粗糙集不确定性度量[J].控制与决策,2016,31(6):983-989.(HUANG G S, WEN H. Uncertainty measures of rough sets based on boundary region and knowledge granularity[J]. Control and Decision, 2016, 31(6):983-989.) [23] 唐朝辉,陈玉明.邻域系统的不确定性度量方法[J].控制与决策,2014,29(4):691-695.(TANG C H, CHEN Y M. Neighborhood system uncertainty measurement approaches[J]. Control and Decision, 2014, 29(4):691-695.) [24] 黄国顺,曾凡智,文翰.基于条件概率的粗糙集不确定性度量[J].控制与决策,2015,30(6):1099-1105.(HUANG G S, ZENG F Z, WEN H. Uncertainty measures of rough set based on conditional possibility[J]. Control and Decision, 2015, 30(6):1099-1105.) [25] ZHAO H, QIN K. Mixed feature selection in incomplete decision table[J]. Knowledge-Based Systems, 2014, 57:181-190. |