[1] SHMUELI E, TASSA T. Privacy by diversity in sequential releases of databases[J]. Information Sciences, 2015, 298:344-372. [2] NI W, GU M, CHEN X. Location privacy-preserving k nearest neighbor query under user's preference[J]. Knowledge-Based Systems, 2016, 103(1):19-27. [3] TRUJILLO-RASUA R, DOMINGO-FERRER J. On the privacy offered by (k, δ) -anonymity[J]. Information Systems, 2013, 38(4):491-494. [4] 张啸剑, 孟小峰. 面向数据发布和分析的差分隐私保护[J]. 计算机学报, 2014,37(4):927-949. (ZHANG X J, MENG X F. Differential privacy in data publication and analysis[J]. Chinese Journal of Computers, 2014,37(4):927-949.) [5] OLIVEIRA S R M, ZAÏANE O R. Achieving privacy preservation when sharing data for clustering[M]//JONKER W, PETKOVIC M. Secure Data Management. Berlin:Springer, 2004:67-82. [6] MUKHERJEE S, CHEN Z, GANGOPADHYAY A. A privacy-preserving technique for Euclidean distance-based mining algorithms using Fourier-related transforms[J]. VLDB Journal, 2006, 15(4):293-315. [7] BLUM A, DWORK C, McSHERRY F, et al. Practical privacy:the SuLQ framework[C]//Proceedings of the Twenty-Fourth ACM Sigmod-Sigact-Sigart Symposium on Principles of Database Systems. New York:ACM, 2005:128-138. [8] DWORK C, NAOR M, PITASSI T, et al. Pan-private streaming algorithms[EB/OL].[2018-01-10]. http://nebula.wsimg.com/e2c5b9c40e7ca5ee436f9cb470b3ea7b?AccessKeyId=0EF19C92671ED94CE585&disposition=0&alloworigin=1. [9] 李杨, 郝志峰, 温雯, 等. 差分隐私保护k-means聚类方法研究[J]. 计算机科学, 2013, 40(3):287-290. (LI Y, HAO Z F, WEN W, et al. Research on differential privacy preserving k-means clustering[J]. Computer Science, 2013, 40(3):287-290.) [10] 李洪成, 吴晓平, 陈燕. MapReduce框架下支持差分隐私保护的k-means聚类方法[J]. 通信学报. 2016, 37(2):124-130. (LI H C, WU X P, CHEN Y. k-means clustering method preserving differential privacy in MapReduce framework[J]. Journal on Communications, 2016, 37(2):124-130.) [11] 吴伟民, 黄焕坤. 基于差分隐私保护的DP-DBScan聚类算法研究[J]. 计算机工程与科学, 2015, 37(4):830-834. (WU W M, HUANG H K. A DP-DBScan clustering algorithm based on differential privacy preserving[J]. Computer Engineering and Science, 2015, 37(4):830-834.) [12] 刘晓迁, 李千目. 基于聚类匿名化的差分隐私保护数据发布方法[J]. 通信学报, 2016, 37(5):125-129. (LIU X Q, LI Q M. Differentially private data release based on clustering anonymization[J]. Journal on Communications, 2016, 37(5):125-129.) [13] MATKOVIC Y, MATKOVIC Y. Robust spectral clustering for noisy data:modeling sparse corruptions improves latent embeddings[C]//Proceedings of the 2017 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2017:737-746. [14] 熊平, 朱天清, 王晓峰. 差分隐私保护及其应用[J]. 计算机学报, 2014, 37(1):101-122. (XIONG P, ZHU T Q, WANG X F. A Survey on differential privacy and applications[J]. Chinese Journal of Computers, 2014, 37(1):101-122.) [15] DWORK C. Differential privacy:a survey of results[C]//Proceedings of the 2008 International Conference on Theory and Applications of Models of Computation. Berlin:Springer, 2008:1-19. [16] McSHERRY F, TALWAR K. Mechanism design via differential privacy[C]//Proceedings of the 2007 IEEE Symposium on Foundations of Computer Science. Piscataway, NJ:IEEE, 2007:94-103. |