[1] 李瑞法,张学勤,陈莹,等.我国进境原木主要疫情分析[J].中国森林病虫,2015,34(5):8-11.(LI R F, ZHANG X Q, CHEN Y, et al. Analysis on main epidemic situation of pests in imported logs[J]. Forest Pest and Disease, 2015, 34(5):8-11.)
[2] 娄定风,许小芳,李嘉,等.6种木材钻蛀性昆虫的声学特征与比较[J].植物检疫,2013,27(1):6-10.(LOU D F, XU X F, LI J, et al. Acoustic characteristics and their comparison of six species of wood borers[J]. Plant Quarantine, 2013, 27(1):6-10.)
[3] SUTIN A, FLYNN T, SALLOUM, H, et al. Vibro-acoustic methods of insect detection in agricultural shipments and wood packing materials[C]//Proceedings of the 2017 IEEE International Symposium on Technologies for Homeland Security. Piscataway, NJ:IEEE, 2017:1-6.
[4] 祁骁杰,卜宇飞,许志春,等.杨树木段内光肩星天牛幼虫数量的声学检测[J].环境昆虫学报,2016, 38(3):529-534.(QI X J, BU Y F, XU Z C, et al. Using acoustic technology detect the different numbers of anoplophora glabripennis larvae in poplar[J]. Journal of Environmental Entomology, 2016, 38(3):529-534.)
[5] PARSONS S, JONES G. Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks[J]. Journal of Experimental Biology, 2000, 203(17):2641-2656.
[6] YAZGAÇ B G, KIRCI M, KIVAN M. Detection of sunn pests using sound signal processing methods[C]//Proceedings of the 2016 5th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). Piscataway, NJ:IEEE, 2016:1-6.
[7] ZILLI D, PARSON O, MERRETT G, et al. A hidden Markov model-based acoustic cicada detector for crowdsourced smartphone biodiversity monitoring[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2013:2945-2951.
[8] LIKITHA M S, GUPTA S R R, HASITHA K, et al. Speech based human emotion recognition using MFCC[C]//Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking. Piscataway, NJ:IEEE, 2017:2257-2260.
[9] POTAMITIS I, GANCHEV T, FAKOTAKIS N. Automatic acoustic identification of crickets and cicadas[C]//Proceedings of the 9th International Symposium on Signal Processing and Its Applications. Piscataway, NJ:IEEE, 2007:1-4.
[10] DONG X, YAN N, WEI Y. Insect sound recognition based on convolutional neural network[C]//Proceedings of the IEEE 3rd International Conference on Image, Vision and Computing. Piscataway, NJ:IEEE, 2018:855-859.
[11] KISKIN I, ZILLI D, LI Y, et al. Bioacoustic detection with wavelet-conditioned convolutional neural networks[EB/OL].[2018-12-28]. https://link.springer.com/article/10.1007/s00521-018-3626-7.
[12] ZHOU X, LI J, ZHOU X. Cascaded CNN-resBiLSTM-CTC:an end-to-end acoustic model for speech recognition[EB/OL].[2019-02-01]. https://arxiv.org/pdf/1810.12001.pdf.
[13] SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117.
[14] HUANG J, ZHOU W, LI H, et al. Sign language recognition using 3D convolutional neural networks[C]//Proceedings of the 2015 IEEE International Conference on Multimedia and Expo. Piscataway, NJ:IEEE, 2015:1-6.
[15] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Brookline, MA:JMLR, 2015, 37:448-456.
[16] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958.
[17] ABADI M, BARHAM P, CHEN J, et al. TensorFlow:a system for large-scale machine learning[C]//Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. Berkeley, CA:USENIX Association, 2016:265-283.
[18] DOWNEY T J, MEYER D J, PRICE R K, et al. Using the receiver operating characteristic to asses the performance of neural classifiers[C]//Proceedings of the 1999 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 1999:3642-3646.
[19] ZEILER M D. ADADELTA:an adaptive learning rate method[EB/OL].[2019-02-01]. https://arxiv.org/pdf/1212.5701.pdf.
[20] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2017, 1:618-626. |