[1] 秦宇.探访马其顿假新闻工厂[N].南方都市报,2017-02-26(RB13). (QIN Y. The fake-news complex[N]. Nanfang Metropolis Daily, 2017-02-26(RB13).). [2] PÉREZ-ROSAS V, KLEINBERG B, LEFEVRE A, et al. Automatic detection of fake news[C]//Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2018:3391-3401. [3] AJAO O, BHOWMIK D, ZARGARI S. Fake news identification on twitter with hybrid CNN and RNN models[C]//Proceedings of the 9th International Conference on Social Media and Society. New York:ACM, 2018:226-230. [4] WANG W Y. "Liar, liar pants on fire":a new benchmark dataset for fake news detection[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2017:422-426. [5] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2014:1746-1751. [6] O'BRIEN N, LATESSA S, EVANGELOPOULOS G, et al. The language of fake news:opening the black-box of deep learning based detectors[EB/OL].[2019-11-01].https://cbmm.mit.edu/sites/default/files/publications/fake-news-paper-NIPS.pdf. [7] ZHOU Z K, GUAN H, BHAT M M, et al. Fake news detection via NLP is vulnerable to adversarial attacks[C]//ICAART 2019:Proceedings of the 11th International Conference on Agents and Artificial Intelligence. Setúbal, Portugal:Science and Technology Publications, 2019, 2:794-800. [8] ETZIONI O, BANKO M, SODERLAND S, et al. Open information extraction from the Web[J]. Communications of the ACM, 2008, 51(12):68-74. [9] RASHKIN H, CHOI E, JANG J Y, et al. Truth of varying shades:analyzing language in fake news and political fact-checking[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2017:2931-2937. [10] ZHAO Z, ZHAO J, SANO Y, et al. Fake news propagate differently from real news even at early stages of spreading[EB/OL].[2019-03-09].https://arxiv.org/ftp/arxiv/papers/1803/1803.03443.pdf. [11] CASTILLO C, MENDOZA M, POBLETE B. Information credibility on twitter[C]//Proceedings of the 20th International Conference on World Wide Web. New York:ACM, 2011:675-684. [12] VOLKOVA S, SHAFFER K, JANG J Y, et al. Separating facts from fiction:linguistic models to classify suspicious and trusted news posts on twitter[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2017:647-653. [13] BOURGONJE P, SCHNEIDER J M, REHM G. From clickbait to fake news detection:an approach based on detecting the stance of headlines to articles[C]//Proceedings of the 2017 Empirical Methods in Natural Language Processing:Natural Language Processing meets Journalism. Stroudsburg:Association for Computational Linguistics, 2017:84-89. [14] WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]//Proceedings of the 14th European Conference on Computer Vision, LNCS 9911. Cham:Springer, 2016:499-515. [15] KARIMI H, ROY P, SABA-SADIYA S, et al. Multi-source multi-class fake news detection[C]//Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2018:1546-1557. [16] 李力钊,蔡国永,潘角. 基于C-GRU的微博谣言事件检测方法[J]. 山东大学学报(工学版), 2019, 49(2):102-106, 115. (LI L Z, CAI G Y, PAN J. A microblog rumor events detection method base on C-GRU[J]. Journal of Shandong University (Engineering Science), 2019, 49(2):102-106, 115.) [17] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297. [18] 梁柯,李健,陈颖雪,等. 基于朴素贝叶斯的文本情感分类及实现[J]. 智能计算机与应用, 2019, 9(5):150-153, 157. (LIANG K, LI J, CHEN Y X, et al. Text emotional classification and realization based on Naïve Bayes[J]. Intelligent Computer and Applications, 2019, 9(5):150-153, 157.) [19] 王奕森,夏树涛. 集成学习之随机森林算法综述[J]. 信息通信技术, 2018, 12(1):49-55. (WANG Y S, XIA S T. A survey of random forests algorithms[J]. Information and Communications Technologies, 2018, 12(1):49-55.) [20] ZHANG C, BENGIO S, HARDT M, et al. Understanding deep learning requires rethinking generalization[EB/OL].[2019-02-26].https://arxiv.org/pdf/1611.03530.pdf. |