[1] AZMI N, KAMARUDIN L M, ZAKARIA A, et al. Radio Frequency IDentification (RFID) range test for animal activity monitoring[C]//Proceedings of the 2019 IEEE International Conference on Sensors and Nanotechnology. Piscataway:IEEE, 2019:1-4. [2] QU X,WEI T,PENG C,et al. A fast face recognition system based on deep learning[C]//Proceedings of the 11th International Symposium on Computational Intelligence and Design. Piscataway:IEEE,2019:289-292. [3] 秦兴, 宋各方. 基于双线性卷积神经网络的猪脸识别算法[J]. 杭州电子科技大学学报,2019,39(2):12-17.(QIN X,SONG G F. Pig face recognition algorithm based on bilinear convolution neural network[J]. Journal of Hangzhou Dianzi University,2019, 39(2):12-17.) [4] SWAIN K B, MAHATO S, PATRO M, et al. Cattle health monitoring system using Arduino and LabVIEW for early detection of diseases[C]//Proceedings of the 3rd International Conference on Sensing,Signal Processing and Security. Piscataway:IEEE,2017:79-82. [5] ANDREW W, GREATWOOD C, BURGHARDT T. Visual localisation and individual identification of Holstein Friesian cattle via deep learning[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops. Piscataway:IEEE, 2017:2850-2859. [6] KUSAKUNNIRAN W, CHAIVIROONJAROEN T. Automatic cattle identification based on multi-channel LBP on muzzle images[C]//Proceedings of the 2018 International Conference on Sustainable Information Engineering and Technology. Piscataway:IEEE,2018:1-5. [7] LIN T Y,ROYCHOWDHURY A,MAJI S. Bilinear convolutional neural networks for fine-grained visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018, 40(6):1309-1322. [8] PAN S J,YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359. [9] GU S,DING L. A complex-valued VGG network based deep learning algorithm for image recognition[C]//Proceedings of the 9th International Conference on Intelligent Control and Information Processing. Piscataway:IEEE,2018:340-343. [10] WANG S,ZHANG Y,YANG D,et al. SSIM prediction for H. 265/HEVC based on convolutional neural networks[C]//Proceedings of the 2019 IEEE International Conference on Visual Communications and Image Processing. Piscataway:IEEE,2019:1-4. [11] 卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理,2016,13(1):1-17.(LU H T, ZHANG Q C. Applications of deep convolutional neural network in computer vision[J]. Journal of Data Acquisition and Processing, 2016,13(1):1-17.) [12] MISHKIN M,UNGERLEIDEN L,MACKO K A. 物体视觉和空间视觉:两条皮层通路[J]. 心理学动态,1986,21(2):31-35. (MISHKIN M,UNGERLEIDEN L,MACKO K A. Object vision and spatial vision:two cortical pathways[J]. Advances in Psychological Science,1986, 21(2):31-35.) [13] WEN L,LI X,GAO L. A transfer convolutional neural network for fault diagnosis based on ResNet-50[J]. Neural Computing and Applications,2020,32(3):6111-6124. [14] MULYONO I U W,SETIADI D R I M,SUSANTO A,et al. Performance analysis of face recognition using eigenface approach[C]//Proceedings of the 2019 International Seminar on Application for Technology of Information and Communication. Piscataway:IEEE,2019:1-5. [15] HUANG G,LIU S,VAN DER MAATEN L,et al. CondenseNet:an efficient DenseNet using learned group convolutions[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:2752-2761. [16] HUANG G,LIU Z,VAN DER MAATEN L,et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:2261-2269. |