《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (5): 1383-1390.DOI: 10.11772/j.issn.1001-9081.2021071240
所属专题: 人工智能
收稿日期:
2021-07-16
修回日期:
2021-08-31
接受日期:
2021-09-14
发布日期:
2021-09-28
出版日期:
2022-05-10
通讯作者:
任炜
作者简介:
任炜(1996—),男,山西襄汾人,硕士研究生,主要研究方向:深度学习、计算机视觉 2783800599@qq.com基金资助:
Received:
2021-07-16
Revised:
2021-08-31
Accepted:
2021-09-14
Online:
2021-09-28
Published:
2022-05-10
Contact:
Wei REN
About author:
REN Wei, born in 1996, M. S. candidate. His research interests include deep learning, computer vision.Supported by:
摘要:
针对多标签图像分类任务中存在的难以对标签间的相互作用建模和全局标签关系固化的问题,结合自注意力机制和知识蒸馏(KD)方法,提出了一种基于全局与局部标签关系的多标签图像分类方法(ML-GLLR)。首先,局部标签关系(LLR)模型使用卷积神经网络(CNN)、语义模块和双层自注意力(DLSA)模块对局部标签关系建模;然后,利用KD方法使LLR学习全局标签关系。在公开数据集MSCOCO2014和VOC2007上进行实验,LLR相较于基于图卷积神经网络多标签图像分类(ML-GCN)方法,在平均精度均值(mAP)上分别提高了0.8个百分点和0.6个百分点,ML-GLLR相较于LLR在mAP上分别进一步提高了0.2个百分点和1.3个百分点。实验结果表明,所提ML-GLLR不仅能对标签间的相互关系进行建模,也能避免全局标签关系固化的问题。
中图分类号:
任炜, 白鹤翔. 基于全局与局部标签关系的多标签图像分类方法[J]. 计算机应用, 2022, 42(5): 1383-1390.
Wei REN, Hexiang BAI. Multi-label image classification method based on global and local label relationship[J]. Journal of Computer Applications, 2022, 42(5): 1383-1390.
方法 | mAP | ALL | Top-3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CP | CR | CF1 | OP | OR | OF1 | CP | CR | CF1 | OP | OR | OF1 | ||
CNN-RNN | 61.2 | ― | ― | ― | ― | ― | ― | 66.0 | 55.6 | 60.4 | 69.2 | 66.4 | 67.8 |
SRN | 77.1 | 81.6 | 65.4 | 71.2 | 82.7 | 69.9 | 75.8 | 85.2 | 58.8 | 67.4 | 87.4 | 62.5 | 72.9 |
Multi-Evidence | ― | 80.4 | 70.2 | 74.9 | 85.2 | 72.5 | 78.4 | 84.5 | 62.2 | 70.6 | 89.1 | 64.3 | 74.7 |
Res-101 | 80.1 | 78.2 | 71.9 | 74.9 | 82.3 | 75.0 | 78.5 | 82.8 | 63.4 | 71.8 | 87.6 | 65.5 | 75.0 |
CNN-LSTM-Att | ― | 80.9 | 70.9 | 75.6 | 83.7 | 74.9 | 79.1 | ― | ― | ― | ― | ― | ― |
ML-GCN | 83.0 | 85.1 | 72.0 | 78.0 | 85.8 | 75.4 | 80.3 | 89.2 | 64.1 | 74.6 | 90.5 | 66.5 | 76.7 |
SSGRL | 83.8 | 89.9 | 68.5 | 76.8 | 91.3 | 70.8 | 79.7 | 91.9 | 62.5 | 72.7 | 93.8 | 64.1 | 76.2 |
LLR | 83.8 | 86.0 | 72.6 | 78.8 | 86.9 | 75.8 | 81.0 | 89.4 | 64.6 | 75.0 | 90.7 | 67.0 | 77.0 |
ML-GLLR | 84.0 | 86.5 | 72.4 | 78.8 | 87.1 | 75.8 | 81.1 | 90.0 | 64.0 | 74.8 | 91.3 | 66.7 | 77.1 |
表1 不同方法在MSCOCO2014数据集上的评价指标对比 ( %)
Tab. 1 Evaluation index comparison of different methods on MSCOCO2014 dataset
方法 | mAP | ALL | Top-3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CP | CR | CF1 | OP | OR | OF1 | CP | CR | CF1 | OP | OR | OF1 | ||
CNN-RNN | 61.2 | ― | ― | ― | ― | ― | ― | 66.0 | 55.6 | 60.4 | 69.2 | 66.4 | 67.8 |
SRN | 77.1 | 81.6 | 65.4 | 71.2 | 82.7 | 69.9 | 75.8 | 85.2 | 58.8 | 67.4 | 87.4 | 62.5 | 72.9 |
Multi-Evidence | ― | 80.4 | 70.2 | 74.9 | 85.2 | 72.5 | 78.4 | 84.5 | 62.2 | 70.6 | 89.1 | 64.3 | 74.7 |
Res-101 | 80.1 | 78.2 | 71.9 | 74.9 | 82.3 | 75.0 | 78.5 | 82.8 | 63.4 | 71.8 | 87.6 | 65.5 | 75.0 |
CNN-LSTM-Att | ― | 80.9 | 70.9 | 75.6 | 83.7 | 74.9 | 79.1 | ― | ― | ― | ― | ― | ― |
ML-GCN | 83.0 | 85.1 | 72.0 | 78.0 | 85.8 | 75.4 | 80.3 | 89.2 | 64.1 | 74.6 | 90.5 | 66.5 | 76.7 |
SSGRL | 83.8 | 89.9 | 68.5 | 76.8 | 91.3 | 70.8 | 79.7 | 91.9 | 62.5 | 72.7 | 93.8 | 64.1 | 76.2 |
LLR | 83.8 | 86.0 | 72.6 | 78.8 | 86.9 | 75.8 | 81.0 | 89.4 | 64.6 | 75.0 | 90.7 | 67.0 | 77.0 |
ML-GLLR | 84.0 | 86.5 | 72.4 | 78.8 | 87.1 | 75.8 | 81.1 | 90.0 | 64.0 | 74.8 | 91.3 | 66.7 | 77.1 |
方法 | mAP | 各类别AP | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
航天 | 自行车 | 鸟 | 船 | 瓶子 | 公交车 | 轿车 | 猫 | 椅子 | 牛 | 桌子 | 狗 | 马 | 摩托 | 人 | 植物 | 羊 | 沙发 | 火车 | 电视机 | ||
CNN-RNN | 84.0 | 96.7 | 83.1 | 94.2 | 92.8 | 61.2 | 82.1 | 89.1 | 94.2 | 64.2 | 83.6 | 70.0 | 92.4 | 91.7 | 84.2 | 93.7 | 59.8 | 93.2 | 75.3 | 99.7 | 78.6 |
RLSD | 88.5 | 96.4 | 92.7 | 93.8 | 94.1 | 71.2 | 92.5 | 94.2 | 95.7 | 74.3 | 90.0 | 74.2 | 95.4 | 96.2 | 92.1 | 97.9 | 66.9 | 93.5 | 73.7 | 97.5 | 87.6 |
VGG | 89.7 | 98.9 | 95.0 | 96.8 | 95.4 | 69.7 | 90.4 | 93.5 | 96.0 | 74.2 | 86.6 | 87.8 | 96.0 | 96.3 | 93.1 | 97.2 | 70.0 | 92.1 | 80.3 | 98.1 | 87.0 |
HCP | 90.9 | 98.6 | 97.1 | 98.0 | 95.6 | 75.3 | 94.7 | 95.8 | 97.3 | 73.1 | 90.2 | 80.0 | 97.3 | 96.1 | 94.9 | 96.3 | 78.3 | 94.7 | 76.2 | 97.9 | 91.5 |
Res-101 | 91.9 | 99.1 | 97.6 | 96.5 | 95.1 | 74.2 | 91.3 | 96.0 | 95.8 | 75.5 | 92.2 | 88.5 | 96.2 | 96.6 | 94.3 | 98.5 | 83.2 | 94.8 | 84.7 | 98.6 | 90.1 |
ML-GCN | 94.0 | 99.5 | 98.5 | 98.6 | 98.1 | 80.8 | 94.6 | 97.2 | 98.2 | 82.3 | 95.7 | 86.4 | 98.2 | 98.4 | 96.7 | 99.0 | 84.7 | 96.7 | 84.3 | 98.9 | 93.7 |
SSGRL | 95.0 | 99.7 | 98.4 | 98.0 | 97.6 | 85.7 | 96.2 | 98.2 | 98.8 | 82.0 | 98.1 | 89.7 | 98.8 | 98.7 | 97.0 | 99.0 | 86.9 | 98.1 | 85.8 | 99.0 | 93.7 |
LLR | 94.6 | 99.4 | 97.5 | 97.9 | 97.1 | 83.9 | 95.2 | 97.7 | 98.0 | 83.6 | 95.4 | 90.0 | 97.7 | 98.0 | 96.3 | 99.0 | 86.8 | 96.5 | 88.4 | 98.7 | 94.4 |
ML-GLLR | 95.9 | 99.8 | 98.4 | 98.2 | 98.2 | 86.2 | 97.6 | 98.2 | 98.8 | 85.7 | 97.2 | 92.6 | 98.7 | 98.9 | 97.1 | 99.2 | 89.2 | 98.3 | 90.7 | 99.3 | 96.1 |
表2 不同方法在VOC2007数据集上各标签的结果对比 ( %)
Tab. 2 Comparison of results in various labels on VOC2007 dataset with different methods
方法 | mAP | 各类别AP | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
航天 | 自行车 | 鸟 | 船 | 瓶子 | 公交车 | 轿车 | 猫 | 椅子 | 牛 | 桌子 | 狗 | 马 | 摩托 | 人 | 植物 | 羊 | 沙发 | 火车 | 电视机 | ||
CNN-RNN | 84.0 | 96.7 | 83.1 | 94.2 | 92.8 | 61.2 | 82.1 | 89.1 | 94.2 | 64.2 | 83.6 | 70.0 | 92.4 | 91.7 | 84.2 | 93.7 | 59.8 | 93.2 | 75.3 | 99.7 | 78.6 |
RLSD | 88.5 | 96.4 | 92.7 | 93.8 | 94.1 | 71.2 | 92.5 | 94.2 | 95.7 | 74.3 | 90.0 | 74.2 | 95.4 | 96.2 | 92.1 | 97.9 | 66.9 | 93.5 | 73.7 | 97.5 | 87.6 |
VGG | 89.7 | 98.9 | 95.0 | 96.8 | 95.4 | 69.7 | 90.4 | 93.5 | 96.0 | 74.2 | 86.6 | 87.8 | 96.0 | 96.3 | 93.1 | 97.2 | 70.0 | 92.1 | 80.3 | 98.1 | 87.0 |
HCP | 90.9 | 98.6 | 97.1 | 98.0 | 95.6 | 75.3 | 94.7 | 95.8 | 97.3 | 73.1 | 90.2 | 80.0 | 97.3 | 96.1 | 94.9 | 96.3 | 78.3 | 94.7 | 76.2 | 97.9 | 91.5 |
Res-101 | 91.9 | 99.1 | 97.6 | 96.5 | 95.1 | 74.2 | 91.3 | 96.0 | 95.8 | 75.5 | 92.2 | 88.5 | 96.2 | 96.6 | 94.3 | 98.5 | 83.2 | 94.8 | 84.7 | 98.6 | 90.1 |
ML-GCN | 94.0 | 99.5 | 98.5 | 98.6 | 98.1 | 80.8 | 94.6 | 97.2 | 98.2 | 82.3 | 95.7 | 86.4 | 98.2 | 98.4 | 96.7 | 99.0 | 84.7 | 96.7 | 84.3 | 98.9 | 93.7 |
SSGRL | 95.0 | 99.7 | 98.4 | 98.0 | 97.6 | 85.7 | 96.2 | 98.2 | 98.8 | 82.0 | 98.1 | 89.7 | 98.8 | 98.7 | 97.0 | 99.0 | 86.9 | 98.1 | 85.8 | 99.0 | 93.7 |
LLR | 94.6 | 99.4 | 97.5 | 97.9 | 97.1 | 83.9 | 95.2 | 97.7 | 98.0 | 83.6 | 95.4 | 90.0 | 97.7 | 98.0 | 96.3 | 99.0 | 86.8 | 96.5 | 88.4 | 98.7 | 94.4 |
ML-GLLR | 95.9 | 99.8 | 98.4 | 98.2 | 98.2 | 86.2 | 97.6 | 98.2 | 98.8 | 85.7 | 97.2 | 92.6 | 98.7 | 98.9 | 97.1 | 99.2 | 89.2 | 98.3 | 90.7 | 99.3 | 96.1 |
方法 | MSCOCO2014 | VOC2007 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
mAP | T-OF1 | T-CF1 | A-OF1 | A-CF1 | mAP | T-OF1 | T-CF1 | A-OF1 | A-CF1 | |
Res-101 | 80.1 | 75.0 | 71.8 | 78.5 | 74.9 | 91.9 | 87.7 | 85.5 | 87.7 | 85.5 |
LLR(无DLSA模块) | 81.4 | 75.6 | 72.9 | 79.2 | 76.5 | 92.7 | 89.3 | 86.9 | 89.3 | 86.9 |
LLR(无语义模块) | 82.1 | 76.0 | 72.8 | 79.6 | 77.0 | 93.6 | 89.9 | 87.7 | 89.9 | 87.7 |
LLR | 83.8 | 77.0 | 75.0 | 81.0 | 78.8 | 94.6 | 90.5 | 88.6 | 90.4 | 88.5 |
ML-GLLR | 84.0 | 77.1 | 74.8 | 81.1 | 78.8 | 95.9 | 90.9 | 89.6 | 90.9 | 89.5 |
表3 消融实验结果 ( %)
Tab. 3 Ablation experimental results
方法 | MSCOCO2014 | VOC2007 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
mAP | T-OF1 | T-CF1 | A-OF1 | A-CF1 | mAP | T-OF1 | T-CF1 | A-OF1 | A-CF1 | |
Res-101 | 80.1 | 75.0 | 71.8 | 78.5 | 74.9 | 91.9 | 87.7 | 85.5 | 87.7 | 85.5 |
LLR(无DLSA模块) | 81.4 | 75.6 | 72.9 | 79.2 | 76.5 | 92.7 | 89.3 | 86.9 | 89.3 | 86.9 |
LLR(无语义模块) | 82.1 | 76.0 | 72.8 | 79.6 | 77.0 | 93.6 | 89.9 | 87.7 | 89.9 | 87.7 |
LLR | 83.8 | 77.0 | 75.0 | 81.0 | 78.8 | 94.6 | 90.5 | 88.6 | 90.4 | 88.5 |
ML-GLLR | 84.0 | 77.1 | 74.8 | 81.1 | 78.8 | 95.9 | 90.9 | 89.6 | 90.9 | 89.5 |
1 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of the 2012 25th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2012: 1097-1105. |
2 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2021-03-15]. . 10.5244/c.28.6 |
3 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
4 | 刘尚旺,郜翔.基于深度模型迁移的细粒度图像分类方法[J].计算机应用,2018,38(8):2198-2204. |
LIU S W, GAO X. Fine-grained image classification method based on deep model transfer [J]. Journal of Computer Applications, 2018, 38(8): 2198-2204. | |
5 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. 10.1109/cvpr.2009.5206848 |
6 | PHAM H, DAI Z H, XIE Q Z, et al. Meta pseudo labels [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11552-11563. 10.1109/cvpr46437.2021.01139 |
7 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014: 740-755. |
8 | ZHU F, LI H S, OUYANG W L, et al. Learning spatial regularization with image-level supervisions for multi-label image classification [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2027-2036. 10.1109/cvpr.2017.219 |
9 | WANG J, YANG Y, MAO J H, et al. CNN-RNN: a unified framework for multi-label image classification [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2285-2294. 10.1109/cvpr.2016.251 |
10 | CHEN S F, CHEN Y C, YEH C K, et al. Order-free RNN with visual attention for multi-label classification [C]// Proceedings of the 2018 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 6714-6721. |
11 | YAZICI V O, GONZALEZ-GARCIA A, RAMISA A, et al. Orderless recurrent models for multi-label classification [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13437-13446. 10.1109/cvpr42600.2020.01345 |
12 | CHEN Z M, WEI X S, WANG P, et al. Multi-label image recognition with graph convolutional networks [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5172-5181. 10.1109/cvpr.2019.00532 |
13 | EVERINGHAM M, GOOL VAN L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge [J]. International Journal of Computer Vision, 2010, 88(2):303-338. 10.1007/s11263-009-0275-4 |
14 | XU K, BA J L, KIROS R, et al. Show, attend and tell: neural image caption generation with visual attention [C]// Proceedings of the 2015 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 2048-2057. |
15 | 张小川,戴旭尧,刘璐,等.融合多头自注意力机制的中文短文本分类模型[J].计算机应用,2020,40(12):3485-3489. 10.11772/j.issn.1001-9081.2020060914 |
ZHANG X C, DAI X Y, LIU L, et al. Chinese short text classification model with multi-head self-attention mechanism [J]. Journal of Computer Applications, 2020, 40(12): 3485-3489. 10.11772/j.issn.1001-9081.2020060914 | |
16 | 高钦泉,赵岩,李根,等.基于知识蒸馏的超分辨率卷积神经网络压缩方法[J].计算机应用,2019,39(10):2802-2808. |
GAO Q Q, ZHAO Y, LI G, et al. Compression method of super-resolution convolutional neural network based on knowledge distillation [J]. Journal of Computer Applications, 2019, 39(10): 2802-2808. | |
17 | 邓棋,雷印杰,田锋.用于肺炎图像分类的优化卷积神经网络方法[J].计算机应用,2020,40(1):71-76. |
DENG Q, LEI Y J, TIAN F. Optimized convolutional neural network method for classification of pneumonia images [J]. Journal of Computer Applications, 2020, 40(1): 71-76. | |
18 | CHEN T S, XU M X, HUI X L, et al. Learning semantic-specific graph representation for multi-label image recognition [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 522-531. 10.1109/iccv.2019.00061 |
19 | GE W F, YANG S B, YU Y Z. Multi-evidence filtering and fusion for multi-label classification, object detection and semantic segmentation based on weakly supervised learning [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1277-1286. 10.1109/cvpr.2018.00139 |
20 | ZHANG J J, WU Q, SHEN C H, et al. Multilabel image classification with regional latent semantic dependencies [J]. IEEE Transactions on Multimedia, 2018, 20(10): 2801-2813. 10.1109/tmm.2018.2812605 |
21 | WEI Y C, XIA W, LIN M, et al. HCP: a flexible CNN framework for multi-label image classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(9): 1901-1907. 10.1109/tpami.2015.2491929 |
[1] | 贾洁茹, 杨建超, 张硕蕊, 闫涛, 陈斌. 基于自蒸馏视觉Transformer的无监督行人重识别[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2893-2902. |
[2] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[3] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[4] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[5] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[6] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[7] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[8] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[9] | 顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625. |
[10] | 石乾宏, 杨燕, 江永全, 欧阳小草, 范武波, 陈强, 姜涛, 李媛. 面向空气质量预测的多粒度突变拟合网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2643-2650. |
[11] | 赵宇博, 张丽萍, 闫盛, 侯敏, 高茂. 基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2421-2429. |
[12] | 吴筝, 程志友, 汪真天, 汪传建, 王胜, 许辉. 基于深度学习的患者麻醉复苏过程中的头部运动幅度分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2258-2263. |
[13] | 王东炜, 刘柏辰, 韩志, 王艳美, 唐延东. 基于低秩分解和向量量化的深度网络压缩方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 1987-1994. |
[14] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
[15] | 张郅, 李欣, 叶乃夫, 胡凯茜. 基于暗知识保护的模型窃取防御技术DKP[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2080-2086. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||