《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (7): 2072-2077.DOI: 10.11772/j.issn.1001-9081.2021050740
所属专题: 人工智能
Wanjun LIU, Jiaming WANG(), Haicheng QU, Libing DONG, Xinyu CAO
摘要:
为了提升深度卷积神经网络对音乐频谱流派特征的提取效果,提出一种基于频谱空间域特征注意的音乐流派分类算法模型DCNN-SSA。DCNN-SSA模型通过对不同音乐梅尔谱图的流派特征在空间域上进行有效标注,并且改变网络结构,从而在提升特征提取效果的同时确保模型的有效性,进而提升音乐流派分类的准确率。首先,将原始音频信号进行梅尔滤波,以模拟人耳的滤波操作对音乐的音强及节奏变化进行有效过滤,所生成的梅尔谱图进行切割后输入网络;然后,通过深化网络层数、改变卷积结构及增加空间注意力机制对模型在流派特征提取上进行增强;最后,通过在数据集上进行多批次的训练与验证来有效提取并学习音乐流派特征,从而得到可以对音乐流派进行有效分类的模型。在GTZAN数据集上的实验结果表明,基于空间注意的音乐流派分类算法与其他深度学习模型相比,在音乐流派分类准确率和模型收敛效果上有所提高,准确率提升了5.36个百分点~10.44个百分点。
中图分类号: