《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (12): 3733-3739.DOI: 10.11772/j.issn.1001-9081.2021101715
所属专题: 人工智能
收稿日期:
2021-10-08
修回日期:
2021-12-09
接受日期:
2021-12-23
发布日期:
2022-01-19
出版日期:
2022-12-10
通讯作者:
毕利
作者简介:
孙鹏翔(1998—),男,山西晋中人,硕士研究生,主要研究方向:图像识别、数据挖掘基金资助:
Pengxiang SUN, Li BI(), Junjie WANG
Received:
2021-10-08
Revised:
2021-12-09
Accepted:
2021-12-23
Online:
2022-01-19
Published:
2022-12-10
Contact:
Li BI
About author:
SUN Pengxiang, born in 1998, M. S. candidate. His research interests include image recognition, data mining.Supported by:
摘要:
光伏板积灰会降低光伏发电的转换效率,同时易造成光伏板的损坏;因此,对光伏板的积灰进行智能识别具有重大意义。针对以上问题,提出一种基于改进深度残差网络的光伏板积灰程度识别模型。首先,通过分解卷积和微调下采样,对次代残差网络(ResNeXt)50进行改进;然后,融合坐标注意力(CA)机制,将位置信息嵌入到通道注意力中,通过精确的位置信息对通道关系和长期依赖性进行编码,并通过二维全局池操作将特征图像分解为两个一维编码,以增强关注对象的表示;最后,用监督对比(SupCon)学习损失函数替代交叉熵损失函数,从而有效提高识别准确率。实验结果表明,在真实光伏电站4个等级的光伏板积灰程度识别中,改进后的ResNeXt50的识别准确率为90.7%,与原始ResNeXt50相比提升了7.2个百分点。所提模型可满足光伏电站智能运维的基本要求。
中图分类号:
孙鹏翔, 毕利, 王俊杰. 基于改进深度残差网络的光伏板积灰程度识别[J]. 计算机应用, 2022, 42(12): 3733-3739.
Pengxiang SUN, Li BI, Junjie WANG. Dust accumulation degree recognition of photovoltaic panel based on improved deep residual network[J]. Journal of Computer Applications, 2022, 42(12): 3733-3739.
网络层 | 输出大小 | 参数设置 |
---|---|---|
Attention | 224×224 | 1×224 x avg pool |
224×1 y avg pool | ||
1×1×16 | ||
1×1×3 | ||
1×1×3 | ||
Conv1 | 112×112 | 3×3×3,same |
3×3×3,same | ||
3×3×64,same | ||
3×3 max pool,stride 2 | ||
Conv2 | 56×56 | 1×1×128 |
3×3×128,stride 2 | ||
1×1×256 | ||
Conv3 | 28×28 | 1×1×256 |
3×3×256,stride 2 | ||
1×1×512 | ||
Conv4 | 14×14 | 1×1×512 |
3×3×512,stride 2 | ||
1×1×1 024 | ||
Conv5 | 7×7 | 1×1×1 024 |
3×3×1 024,stride 2 | ||
1×1×2 048 |
表1 网络参数设置
Tab. 1 Network parameter setting
网络层 | 输出大小 | 参数设置 |
---|---|---|
Attention | 224×224 | 1×224 x avg pool |
224×1 y avg pool | ||
1×1×16 | ||
1×1×3 | ||
1×1×3 | ||
Conv1 | 112×112 | 3×3×3,same |
3×3×3,same | ||
3×3×64,same | ||
3×3 max pool,stride 2 | ||
Conv2 | 56×56 | 1×1×128 |
3×3×128,stride 2 | ||
1×1×256 | ||
Conv3 | 28×28 | 1×1×256 |
3×3×256,stride 2 | ||
1×1×512 | ||
Conv4 | 14×14 | 1×1×512 |
3×3×512,stride 2 | ||
1×1×1 024 | ||
Conv5 | 7×7 | 1×1×1 024 |
3×3×1 024,stride 2 | ||
1×1×2 048 |
模型 | 卷积大小 | 堆叠数量 | 准确率/% | 参数量/KB |
---|---|---|---|---|
原始Conv1 | 7×7 | 1 | 83.5 | 9 472 |
分解卷积Conv1 | 3×3 | 3 | 84.7 | 1 792 |
表2 分解卷积的实验结果
Tab. 2 Experimental results of decomposition convolution
模型 | 卷积大小 | 堆叠数量 | 准确率/% | 参数量/KB |
---|---|---|---|---|
原始Conv1 | 7×7 | 1 | 83.5 | 9 472 |
分解卷积Conv1 | 3×3 | 3 | 84.7 | 1 792 |
模型 | 下采样位置 | 准确率/% |
---|---|---|
原始ResNeXt | 首个1×1卷积 | 83.5 |
下采样微调ResNeXt | 3×3卷积 | 85.1 |
表3 下采样微调实验结果
Tab. 3 Experimental results of down-sampling fine-tuning
模型 | 下采样位置 | 准确率/% |
---|---|---|
原始ResNeXt | 首个1×1卷积 | 83.5 |
下采样微调ResNeXt | 3×3卷积 | 85.1 |
模型 | 嵌入位置 | 准确率/% |
---|---|---|
原始ResNeXt(a) | 无 | 83.5 |
ResNeXt‑CA(b) | Conv1前 | 85.8 |
ResNeXt‑CA(c) | Conv2前 | 85.1 |
ResNeXt‑CA(d) | Conv3前 | 84.7 |
ResNeXt‑CA(e) | Conv4前 | 84.2 |
ResNeXt‑CA(f) | Conv5前 | 83.9 |
表4 不同位置嵌入CA注意力模块的实验结果
Tab. 4 Experimental results of embedding CA attention module in different positions
模型 | 嵌入位置 | 准确率/% |
---|---|---|
原始ResNeXt(a) | 无 | 83.5 |
ResNeXt‑CA(b) | Conv1前 | 85.8 |
ResNeXt‑CA(c) | Conv2前 | 85.1 |
ResNeXt‑CA(d) | Conv3前 | 84.7 |
ResNeXt‑CA(e) | Conv4前 | 84.2 |
ResNeXt‑CA(f) | Conv5前 | 83.9 |
模型 | 准确率 | 模型 | 准确率 |
---|---|---|---|
ResNeXt | 83.5 | ResNeXt‑CBAM | 85.1 |
ResNeXt‑SE | 84.2 | ResNeXt‑CA(b) | 85.8 |
表5 不同注意力机制的实验结果 (%)
Tab.5 Experimental results of different attention mechanisms
模型 | 准确率 | 模型 | 准确率 |
---|---|---|---|
ResNeXt | 83.5 | ResNeXt‑CBAM | 85.1 |
ResNeXt‑SE | 84.2 | ResNeXt‑CA(b) | 85.8 |
模型 | 准确率 |
---|---|
ResNeXt‑交叉熵(Loss) | 83.5 |
ResNeXt‑SupCon(Loss) | 85.6 |
表6 SupCon学习损失函数的实验结果 (%)
Tab. 6 Experimental results of SupCon learning loss function
模型 | 准确率 |
---|---|
ResNeXt‑交叉熵(Loss) | 83.5 |
ResNeXt‑SupCon(Loss) | 85.6 |
模型 | 准确率 | 模型 | 准确率 |
---|---|---|---|
随机森林 | 66.7 | MobileNetV3 | 83.9 |
KNN | 71.3 | InceptionV3 | 84.2 |
SVM | 75.8 | Inception-ResNetV2 | 85.9 |
ResNeXt50 | 83.5 | 改进ResNeXt50 | 90.7 |
ResNet50 | 81.8 |
表7 不同模型的实验结果 (%)
Tab. 7 Experimental results of different models
模型 | 准确率 | 模型 | 准确率 |
---|---|---|---|
随机森林 | 66.7 | MobileNetV3 | 83.9 |
KNN | 71.3 | InceptionV3 | 84.2 |
SVM | 75.8 | Inception-ResNetV2 | 85.9 |
ResNeXt50 | 83.5 | 改进ResNeXt50 | 90.7 |
ResNet50 | 81.8 |
模型 | 参数量/MB | 推理时间/ms | 训练时长/min |
---|---|---|---|
ResNeXt50 | 25.0 | 10.1 | 70.0 |
改进ResNeXt50 | 25.5 | 10.3 | 71.3 |
表8 模型消耗对比
Tab. 8 Comparison of model consumption
模型 | 参数量/MB | 推理时间/ms | 训练时长/min |
---|---|---|---|
ResNeXt50 | 25.0 | 10.1 | 70.0 |
改进ResNeXt50 | 25.5 | 10.3 | 71.3 |
1 | 曲宏伟,王靖雯. 积灰对光伏板输出特性影响理论和试验研究[J]. 太阳能学报, 2018, 39(8):2335-2340. |
QU H W, WANG J W. Theory and experimental research of effect of dust deposition on output characteristics of PV module[J]. Acta Energiae Solaris Sinica, 2018, 39(8): 2335-2340. | |
2 | SAIDAN M, ALBAALI A G, ALASIS E, et al. Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment[J]. Renewable Energy, 2016, 92: 499-505. 10.1016/j.renene.2016.02.031 |
3 | 范思远,王煜,曹生现,等. 积灰对光伏组件输出特性影响建模与分析[J]. 仪器仪表学报, 2021, 42(4):83-91. 10.19650/j.cnki.cjsi.J2007117 |
FAN S Y, WANG Y, CAO S X, et al. Effect modeling and analysis of dust accumulation on output characteristics of photovoltaic modules[J]. Chinese Journal of Scientific Instrument, 2021, 42(4):83-91. 10.19650/j.cnki.cjsi.J2007117 | |
4 | 牛海明,崔青汝,刘厚旭. 积灰对光伏电池板输出特性影响研究[J]. 热力发电, 2021, 50(2):110-117. |
NIU H M, CUI Q R, LIU H X. Effect of ash accumulation on output performance of photovoltaic panels[J]. Thermal Power Generation, 2021, 50(2): 110-117. | |
5 | 赵波,张姝伟,曹生现,等. 基于状态监测的电池板积灰清洗周期确定与费用评估[J]. 中国电机工程学报, 2019, 39(14):4205-4213. 10.13334/j.0258-8013.pcsee.172685 |
ZHAO B, ZHANG S W, CAO S X, et al. Cleaning cycle determination and cost estimation for photovoltaic modules based on dust accumulating condition monitoring[J]. Proceedings of the CSEE, 2019, 39(14): 4205-4213. 10.13334/j.0258-8013.pcsee.172685 | |
6 | 吴春华,袁同浩,陈雪娟,等. 光伏电站不均匀积灰检测及优化控制[J]. 太阳能学报, 2017, 38(3):774-780. |
WU C H, YUAN T H, CHEN X J, et al. PV plant uneven fouling detection and control optimization[J]. Acta Energiae Solaris Sinica, 2017, 38(3): 774-780. | |
7 | 周晓明,朱周洪,陈军松,等.光反射型光伏板清洁度检测仪设计[J]. 中国计量学院学报, 2016, 27(1):44-47, 72. 10.3969/j.issn.1004-1540.2016.01.008 |
ZHOU X M, ZHU Z H, CHEN J S, et al. Design of a photovoltaic panel cleanness detector based on reflection light[J]. Journal of China University of Metrology, 2016, 27(1): 44-47, 72. 10.3969/j.issn.1004-1540.2016.01.008 | |
8 | 赵波,廖坤,邓春宇,等. 基于卷积神经学习的光伏板积灰状态识别与分析[J]. 中国电机工程报, 2019, 39(23):6981-6989, 7111. |
ZHAO B, LIAO K, DENG C Y, et al. Image convolutional neural learning based image recognition and analysis method for dust on photovoltaic panel[J]. Proceedings of the CSEE, 2019, 39(23): 6981-6989, 7111. | |
9 | 季长清,高志勇,秦静,等. 基于卷积神经网络的图像分类算法综述[J]. 计算机应用, 2022, 42(4):1044-1049. |
JI C Q, GAO Z Y, QIN J, et al. Review of image classification algorithms based on convolutional neural network[J]. Journal of Computer Applications, 2022, 42(4):1044-1049. | |
10 | 郑含博,李金恒,刘洋,等. 基于改进YOLOv3的电力设备红外目标检测模型[J]. 电工技术学报, 2021, 36(7):1389-1398. |
ZHENG H B, LI J H, LIU Y, et al. Infrared object detection model for power equipment based on improved YOLOv3[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1389-1398. | |
11 | 黄锐勇,戴美胜,郑跃斌,等. 电力设备红外图像缺陷检测[J]. 中国电力, 2021, 54(2):147-155. |
HUANG R Y, DAI M S, ZHENG Y B, et al. Defect detection of power equipment by infrared image[J]. Electric Power, 2021, 54(2): 147-155. | |
12 | QI B H, DA Q Z, JIA S F. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. 10.1109/cvpr46437.2021.01350 |
13 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
14 | XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5987-5995. 10.1109/cvpr.2017.634 |
15 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. 10.1109/cvpr.2016.308 |
16 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
17 | WOO S H, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
18 | KHOSLA P, TERERWAK P, WANG C, et al. Supervised contrastive learning[C/OL]// Proceedings of the 34th Conference on Neural Information Processing Systems. [2021-04-23].. |
19 | 严陆光,顾国彪,贺德鑫,等. 中国电气工程大典第七卷:可再生能源发电工程[M]. 北京:中国电力工业出版社, 2010:48-51. |
YAN L G, GU G B, HE D X, et al. China Electrical Engineering Canon Vol. 7: Renewable Energy Power Generation Engineering[M]. Beijing: China Electric Power Industry Press, 2010: 40-51. | |
20 | LOSHCHILOV I, HUTTER F. SGDR: stochastic gradient descent with restarts[EB/OL]. (2017-05-03) [2021-08-03].. |
21 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 618-626. 10.1109/iccv.2017.74 |
22 | 杨萌林,张文生. 分类激活图增强的图像分类算法[J]. 计算机科学与探索, 2020, 14(1):149-158. |
YANG M L, ZHANG W S. Image classification algorithm based on classification activation map enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 149-158. | |
23 | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7132-7141. 10.1109/iccv.2019.00140 |
24 | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 4278-4284. 10.1609/aaai.v31i1.11231 |
[1] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[2] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[3] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[4] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[5] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. |
[6] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[7] | 李钟华, 白云起, 王雪津, 黄雷雷, 林初俊, 廖诗宇. 基于图像增强的低照度人脸检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2588-2594. |
[8] | 莫尚斌, 王文君, 董凌, 高盛祥, 余正涛. 基于多路信息聚合协同解码的单通道语音增强[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2611-2617. |
[9] | 刘丽, 侯海金, 王安红, 张涛. 基于多尺度注意力的生成式信息隐藏算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2102-2109. |
[10] | 徐松, 张文博, 王一帆. 基于时空信息的轻量视频显著性目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2192-2199. |
[11] | 李大海, 王忠华, 王振东. 结合空间域和频域信息的双分支低光照图像增强网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2175-2182. |
[12] | 魏文亮, 王阳萍, 岳彪, 王安政, 张哲. 基于光照权重分配和注意力的红外与可见光图像融合深度学习模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2183-2191. |
[13] | 熊武, 曹从军, 宋雪芳, 邵云龙, 王旭升. 基于多尺度混合域注意力机制的笔迹鉴别方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2225-2232. |
[14] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
[15] | 毛典辉, 李学博, 刘峻岭, 张登辉, 颜文婧. 基于并行异构图和序列注意力机制的中文实体关系抽取模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2018-2025. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||