《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (9): 2679-2685.DOI: 10.11772/j.issn.1001-9081.2022091389
• 2022第10届CCF大数据学术会议 • 上一篇 下一篇
收稿日期:
2022-09-06
修回日期:
2022-09-30
接受日期:
2022-10-08
发布日期:
2022-10-17
出版日期:
2023-09-10
通讯作者:
欧云
作者简介:
周恺卿(1984—),男,湖南长沙人,副教授,博士,CCF会员,主要研究方向:临床辅助决策系统、模糊Petri网、群智能算法基金资助:
Yun OU1(), Kaiqing ZHOU1, Pengfei YIN2, Xuewei LIU3
Received:
2022-09-06
Revised:
2022-09-30
Accepted:
2022-10-08
Online:
2022-10-17
Published:
2023-09-10
Contact:
Yun OU
About author:
ZHOU Kaiqing, born in 1984, Ph. D., associate professor. His research interests include clinical assistant decision-making system, fuzzy Petri net, swarm intelligence algorithm.Supported by:
摘要:
针对标准灰狼优化算法(GWO)的收敛速度慢、易陷入局部最优等缺点,提出一种在非线性双收敛因子策略下基于双头狼引领的改进灰狼优化(GWO-THW)算法。首先,利用混沌Cubic映射初始化种群,提升种群分布的均匀性和多样性,并通过平均适应度值将狼群分为捕猎狼和侦察狼,两类狼群采用不同的收敛因子,在各自的头狼带领下寻找和围捕猎物;其次,为提升搜索速度和精度,设计了一种位置更新的自适应权重因子;同时,为跳出局部最优,当一定时间内未发现猎物时,狼群采用莱维(Levy)飞行策略随机更新位置。在10个常用的基准测试函数上验证GWO-THW的有效性。实验结果表明,与标准GWO及相关变体相比,GWO-THW在8个基准测试函数上都取得了较高的寻优精度和收敛速度,尤其在多峰函数上,200次迭代内就能收敛到理想最优值,从而验证了GWO-THW具有更好的寻优性能。
中图分类号:
欧云, 周恺卿, 尹鹏飞, 刘雪薇. 双收敛因子策略下的改进灰狼优化算法[J]. 计算机应用, 2023, 43(9): 2679-2685.
Yun OU, Kaiqing ZHOU, Pengfei YIN, Xuewei LIU. Improved grey wolf optimizer algorithm based on dual convergence factor strategy[J]. Journal of Computer Applications, 2023, 43(9): 2679-2685.
函数名 | 函数表达式 | 维度 | 范围 | 最优值 |
---|---|---|---|---|
Sphere | 30 | [-100,100] | 0 | |
Schwefel2.22 | 30 | [-10,10] | 0 | |
Schwefel1.2 | 30 | [-100,100] | 0 | |
Schwefel2.21 | 30 | [-100,100] | 0 | |
Rosenbrock | 30 | [-30,30] | 0 | |
Step | 30 | [-100,100] | 0 | |
Quartic | 30 | [-128,128] | 0 | |
Rastrigin | 30 | [-5.12,5.12] | 0 | |
Ackley | 30 | [-32,32] | 0 | |
Griewank | 30 | [-600,600] | 0 |
表1 10个基准测试函数
Tab. 1 Ten benchmark functions
函数名 | 函数表达式 | 维度 | 范围 | 最优值 |
---|---|---|---|---|
Sphere | 30 | [-100,100] | 0 | |
Schwefel2.22 | 30 | [-10,10] | 0 | |
Schwefel1.2 | 30 | [-100,100] | 0 | |
Schwefel2.21 | 30 | [-100,100] | 0 | |
Rosenbrock | 30 | [-30,30] | 0 | |
Step | 30 | [-100,100] | 0 | |
Quartic | 30 | [-128,128] | 0 | |
Rastrigin | 30 | [-5.12,5.12] | 0 | |
Ackley | 30 | [-32,32] | 0 | |
Griewank | 30 | [-600,600] | 0 |
测试函数 | 指标 | GWO | GWO1 | GWO2 | GWO3 | GWO4 | GWO-THW |
---|---|---|---|---|---|---|---|
F1 | 均值 | 2.12E-27 | 5.91E-292 | 1.23E-76 | 1.83E-37 | 1.90E-292 | 3.01E-293 |
标准差 | 4.06E-27 | 0 | 6.73E-76 | 4.61E-37 | 0 | 0 | |
F2 | 均值 | 7.44E-17 | 1.59E-178 | 3.00E-49 | 1.28E-22 | 2.61E-178 | 1.42E-177 |
标准差 | 7.71E-17 | 0 | 8.09E-49 | 1.09E-22 | 0 | 0 | |
F3 | 均值 | 4.27E-06 | 1.59E-243 | 5.52E-48 | 4.53E-02 | 6.86E-244 | 1.03E-246 |
标准差 | 6.63E-06 | 0 | 2.03E-47 | 1.30E-01 | 0 | 0 | |
F4 | 均值 | 7.29E-07 | 3.68E-148 | 7.17E-30 | 2.07E-07 | 4.63E-149 | 2.12E-149 |
标准差 | 5.78E-07 | 1.99E-147 | 1.71E-29 | 4.10E-07 | 1.67E-148 | 6.78E-149 | |
F5 | 均值 | 2.69E+01 | 2.65E+01 | 2.63E+01 | 2.66E+01 | 2.72E+01 | 2.67E+01 |
标准差 | 6.49E-01 | 4.15E-01 | 3.43E-01 | 4.00E-01 | 7.42E-01 | 4.23E-01 | |
F6 | 均值 | 8.21E-01 | 8.92E-03 | 9.86E-05 | 6.95E-06 | 6.73E-01 | 1.20E-05 |
标准差 | 4.16E-01 | 3.41E-02 | 2.82E-05 | 2.97E-06 | 3.94E-01 | 5.42E-06 | |
F7 | 均值 | 2.60E-03 | 1.55E-04 | 8.64E-04 | 3.09E-03 | 1.21E-04 | 1.48E-04 |
标准差 | 1.02E-03 | 1.20E-04 | 6.44E-04 | 2.03E-03 | 1.24E-04 | 1.29E-04 | |
F8 | 均值 | 3.22E+00 | 0 | 0 | 8.51E+00 | 0 | 0 |
标准差 | 4.10E+00 | 0 | 0 | 1.55E+01 | 0 | 0 | |
F9 | 均值 | 1.00E-13 | 0 | 4.74E-16 | 1.60E-14 | 0 | 0 |
标准差 | 1.87E-14 | 0 | 1.23E-15 | 3.20E-15 | 0 | 0 | |
F10 | 均值 | 4.63E-03 | 0 | 0 | 1.96E-03 | 0 | 0 |
标准差 | 9.20E-03 | 0 | 0 | 6.03E-03 | 0 | 0 |
表2 消融实验结果
Tab. 2 Ablation experiment results
测试函数 | 指标 | GWO | GWO1 | GWO2 | GWO3 | GWO4 | GWO-THW |
---|---|---|---|---|---|---|---|
F1 | 均值 | 2.12E-27 | 5.91E-292 | 1.23E-76 | 1.83E-37 | 1.90E-292 | 3.01E-293 |
标准差 | 4.06E-27 | 0 | 6.73E-76 | 4.61E-37 | 0 | 0 | |
F2 | 均值 | 7.44E-17 | 1.59E-178 | 3.00E-49 | 1.28E-22 | 2.61E-178 | 1.42E-177 |
标准差 | 7.71E-17 | 0 | 8.09E-49 | 1.09E-22 | 0 | 0 | |
F3 | 均值 | 4.27E-06 | 1.59E-243 | 5.52E-48 | 4.53E-02 | 6.86E-244 | 1.03E-246 |
标准差 | 6.63E-06 | 0 | 2.03E-47 | 1.30E-01 | 0 | 0 | |
F4 | 均值 | 7.29E-07 | 3.68E-148 | 7.17E-30 | 2.07E-07 | 4.63E-149 | 2.12E-149 |
标准差 | 5.78E-07 | 1.99E-147 | 1.71E-29 | 4.10E-07 | 1.67E-148 | 6.78E-149 | |
F5 | 均值 | 2.69E+01 | 2.65E+01 | 2.63E+01 | 2.66E+01 | 2.72E+01 | 2.67E+01 |
标准差 | 6.49E-01 | 4.15E-01 | 3.43E-01 | 4.00E-01 | 7.42E-01 | 4.23E-01 | |
F6 | 均值 | 8.21E-01 | 8.92E-03 | 9.86E-05 | 6.95E-06 | 6.73E-01 | 1.20E-05 |
标准差 | 4.16E-01 | 3.41E-02 | 2.82E-05 | 2.97E-06 | 3.94E-01 | 5.42E-06 | |
F7 | 均值 | 2.60E-03 | 1.55E-04 | 8.64E-04 | 3.09E-03 | 1.21E-04 | 1.48E-04 |
标准差 | 1.02E-03 | 1.20E-04 | 6.44E-04 | 2.03E-03 | 1.24E-04 | 1.29E-04 | |
F8 | 均值 | 3.22E+00 | 0 | 0 | 8.51E+00 | 0 | 0 |
标准差 | 4.10E+00 | 0 | 0 | 1.55E+01 | 0 | 0 | |
F9 | 均值 | 1.00E-13 | 0 | 4.74E-16 | 1.60E-14 | 0 | 0 |
标准差 | 1.87E-14 | 0 | 1.23E-15 | 3.20E-15 | 0 | 0 | |
F10 | 均值 | 4.63E-03 | 0 | 0 | 1.96E-03 | 0 | 0 |
标准差 | 9.20E-03 | 0 | 0 | 6.03E-03 | 0 | 0 |
测试 函数 | 算法 | 最差值 | 最佳值 | 平均值 | 标准差 | 测试 函数 | 算法 | 最差值 | 最佳值 | 平均值 | 标准差 |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | DE | 6.75E-01 | 3.73E-02 | 2.57E-01 | 1.63E-01 | F6 | DE | 6.96E-01 | 7.13E-02 | 2.34E-01 | 1.42E-01 |
FA | 5.96E-01 | 3.77E-01 | 4.88E-01 | 5.44E-02 | FA | 6.27E-01 | 3.92E-01 | 4.95E-01 | 5.18E-02 | ||
PSO | 2.09E-06 | 3.92E-16 | 7.81E-08 | 3.75E-07 | PSO | 5.36E+00 | 4.23E+00 | 4.78E+00 | 3.09E-01 | ||
GWO-THW | 8.94E-292 | 0 | 3.01E-293 | 0 | GWO-THW | 2.57E-05 | 4.67E-06 | 1.20E-05 | 5.42E-06 | ||
F2 | DE | 8.31E-01 | 1.75E-01 | 4.17E-01 | 1.81E-01 | F7 | DE | 3.96E+02 | 1.45E+01 | 7.34E+01 | 7.86E+01 |
FA | 3.84E+00 | 2.92E+00 | 3.24E+00 | 2.31E-01 | FA | 8.71E-01 | 3.79E-01 | 6.00E-01 | 1.21E-01 | ||
PSO | 3.79E-06 | 6.93E-11 | 6.27E-07 | 1.07E-06 | PSO | 1.54E-02 | 1.97E-04 | 3.82E-03 | 4.01E-03 | ||
GWO-THW | 3.38E-176 | 8.96E-186 | 1.42E-177 | 0 | GWO-THW | 5.99E-04 | 4.32E-06 | 1.48E-04 | 1.29E-04 | ||
F3 | DE | 7.61E+03 | 2.44E+04 | 1.49E+04 | 4.40E+03 | F8 | DE | 2.46E+02 | 1.79E+02 | 2.10E+02 | 1.54E+01 |
FA | 1.96E+00 | 9.67E-01 | 1.37E+00 | 2.25E-01 | FA | 2.86E+02 | 1.69E+02 | 2.27E+02 | 2.93E+01 | ||
PSO | 7.88E+01 | 3.39E-04 | 5.80E+00 | 1.54E+01 | PSO | 3.70E-05 | 0 | 1.55E-06 | 6.70E-06 | ||
GWO-THW | 1.60E-262 | 2.95E-245 | 1.03E-246 | 0 | GWO-THW | 0 | 0 | 0 | 0 | ||
F4 | DE | 3.35E+01 | 1.32E+01 | 2.15E+01 | 5.91E+00 | F9 | DE | 2.00E+01 | 1.14E-01 | 4.52E+00 | 7.79E+00 |
FA | 3.49E-01 | 2.54E-01 | 3.10E-01 | 2.36E-02 | FA | 2.00E+01 | 1.91E+01 | 1.97E+01 | 2.51E-01 | ||
PSO | 3.30E-02 | 6.45E-07 | 4.70E-03 | 7.87E-03 | PSO | 8.92E-05 | 5.38E-09 | 7.97E-06 | 1.77E-05 | ||
GWO-THW | 2.90E-148 | 8.81E-158 | 2.12E-149 | 6.78E-149 | GWO-THW | 0 | 0 | 0 | 0 | ||
F5 | DE | 1.74E+03 | 4.66E+01 | 2.69E+02 | 3.85E+02 | F10 | DE | 8.70E-01 | 9.10E-02 | 5.34E-01 | 2.39E-01 |
FA | 6.68E+02 | 6.37E+01 | 1.48E+02 | 1.63E+02 | FA | 6.12E-02 | 2.10E-02 | 3.43E-02 | 1.00E-02 | ||
PSO | 2.89E+01 | 2.72E+01 | 2.81E+01 | 4.54E-01 | PSO | 8.89E-06 | 9.66E-15 | 3.82E-07 | 1.59E-06 | ||
GWO-THW | 2.72E+01 | 2.60E+01 | 2.67E+01 | 4.23E-01 | GWO-THW | 0 | 0 | 0 | 0 |
表3 本文算法与其他群智能算法的比较结果
Tab. 3 Comparison results of the proposed algorithm and other swarm intelligence algorithms
测试 函数 | 算法 | 最差值 | 最佳值 | 平均值 | 标准差 | 测试 函数 | 算法 | 最差值 | 最佳值 | 平均值 | 标准差 |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | DE | 6.75E-01 | 3.73E-02 | 2.57E-01 | 1.63E-01 | F6 | DE | 6.96E-01 | 7.13E-02 | 2.34E-01 | 1.42E-01 |
FA | 5.96E-01 | 3.77E-01 | 4.88E-01 | 5.44E-02 | FA | 6.27E-01 | 3.92E-01 | 4.95E-01 | 5.18E-02 | ||
PSO | 2.09E-06 | 3.92E-16 | 7.81E-08 | 3.75E-07 | PSO | 5.36E+00 | 4.23E+00 | 4.78E+00 | 3.09E-01 | ||
GWO-THW | 8.94E-292 | 0 | 3.01E-293 | 0 | GWO-THW | 2.57E-05 | 4.67E-06 | 1.20E-05 | 5.42E-06 | ||
F2 | DE | 8.31E-01 | 1.75E-01 | 4.17E-01 | 1.81E-01 | F7 | DE | 3.96E+02 | 1.45E+01 | 7.34E+01 | 7.86E+01 |
FA | 3.84E+00 | 2.92E+00 | 3.24E+00 | 2.31E-01 | FA | 8.71E-01 | 3.79E-01 | 6.00E-01 | 1.21E-01 | ||
PSO | 3.79E-06 | 6.93E-11 | 6.27E-07 | 1.07E-06 | PSO | 1.54E-02 | 1.97E-04 | 3.82E-03 | 4.01E-03 | ||
GWO-THW | 3.38E-176 | 8.96E-186 | 1.42E-177 | 0 | GWO-THW | 5.99E-04 | 4.32E-06 | 1.48E-04 | 1.29E-04 | ||
F3 | DE | 7.61E+03 | 2.44E+04 | 1.49E+04 | 4.40E+03 | F8 | DE | 2.46E+02 | 1.79E+02 | 2.10E+02 | 1.54E+01 |
FA | 1.96E+00 | 9.67E-01 | 1.37E+00 | 2.25E-01 | FA | 2.86E+02 | 1.69E+02 | 2.27E+02 | 2.93E+01 | ||
PSO | 7.88E+01 | 3.39E-04 | 5.80E+00 | 1.54E+01 | PSO | 3.70E-05 | 0 | 1.55E-06 | 6.70E-06 | ||
GWO-THW | 1.60E-262 | 2.95E-245 | 1.03E-246 | 0 | GWO-THW | 0 | 0 | 0 | 0 | ||
F4 | DE | 3.35E+01 | 1.32E+01 | 2.15E+01 | 5.91E+00 | F9 | DE | 2.00E+01 | 1.14E-01 | 4.52E+00 | 7.79E+00 |
FA | 3.49E-01 | 2.54E-01 | 3.10E-01 | 2.36E-02 | FA | 2.00E+01 | 1.91E+01 | 1.97E+01 | 2.51E-01 | ||
PSO | 3.30E-02 | 6.45E-07 | 4.70E-03 | 7.87E-03 | PSO | 8.92E-05 | 5.38E-09 | 7.97E-06 | 1.77E-05 | ||
GWO-THW | 2.90E-148 | 8.81E-158 | 2.12E-149 | 6.78E-149 | GWO-THW | 0 | 0 | 0 | 0 | ||
F5 | DE | 1.74E+03 | 4.66E+01 | 2.69E+02 | 3.85E+02 | F10 | DE | 8.70E-01 | 9.10E-02 | 5.34E-01 | 2.39E-01 |
FA | 6.68E+02 | 6.37E+01 | 1.48E+02 | 1.63E+02 | FA | 6.12E-02 | 2.10E-02 | 3.43E-02 | 1.00E-02 | ||
PSO | 2.89E+01 | 2.72E+01 | 2.81E+01 | 4.54E-01 | PSO | 8.89E-06 | 9.66E-15 | 3.82E-07 | 1.59E-06 | ||
GWO-THW | 2.72E+01 | 2.60E+01 | 2.67E+01 | 4.23E-01 | GWO-THW | 0 | 0 | 0 | 0 |
测试函数 | 指标 | GWO | EGWO | LGWO | NGWO | TGWO | OGWO | DGWO2 | GWO-THW |
---|---|---|---|---|---|---|---|---|---|
F1 | 均值 | 2.12E-27 | 1.17E-36 | 3.17E-30 | 1.16E-47 | 3.13E-76 | 5.09E-39 | 8.56E-63 | 3.01E-293 |
标准差 | 4.06E-27 | 1.05E-36 | 4.07E-20 | 2.72E-47 | 3.62E-76 | 1.43E-38 | 2.29E-62 | 0 | |
F2 | 均值 | 7.44E-17 | 2.84E-23 | 5.39E-19 | 2.92E-28 | 2.67E-41 | 1.40E-23 | 1.20E-35 | 1.42E-177 |
标准差 | 7.71E-17 | 1.47E-23 | 1.07E-02 | 4.16E-28 | 3.16E-41 | 2.43E-23 | 1.49E-35 | 0 | |
F3 | 均值 | 4.27E-06 | 6.19E-05 | 8.12E-08 | 9.98E-12 | 2.08E-39 | 4.83E-37 | 1.56E-60 | 1.03E-246 |
标准差 | 6.63E-06 | 1.21E-04 | 2.05E+00 | 1.99E-11 | 3.30E-39 | 1.88E-36 | 3.66E-60 | 0 | |
F4 | 均值 | 7.29E-07 | 2.43E-08 | 1.17E-08 | 7.15E-13 | 2.56E-29 | 2.34E-12 | 2.23E-14 | 2.12E-149 |
标准差 | 5.78E-07 | 4.08E-08 | 1.32E+00 | 7.60E-13 | 4.34E-29 | 5.21E-12 | 4.54E-14 | 6.78E-149 | |
F5 | 均值 | 2.69E+01 | 4.86E+01 | 8.35E+00 | 2.61E+01 | — | 2.67E+01 | 2.70E+01 | 2.67E+01 |
标准差 | 6.49E-01 | 9.44E+00 | 5.34E+00 | 3.96E-01 | — | 4.99E-01 | 5.91E-01 | 4.23E-01 | |
F6 | 均值 | 8.21E-01 | 0 | 2.69E-04 | 5.62E-01 | — | 5.59E-01 | 7.47E-01 | 1.20E-05 |
标准差 | 4.16E-01 | 0 | 2.30E-05 | 2.32E-01 | — | 3.34E-01 | 3.34E-01 | 5.42E-06 | |
F7 | 均值 | 2.60E-03 | 4.27E-03 | 3.02E-03 | 1.05E-03 | — | 1.69E-04 | 2.26E-03 | 1.48E-04 |
标准差 | 1.02E-03 | 1.50E-03 | 1.10E-03 | 2.32E-04 | — | 1.32E-04 | 1.14E-03 | 1.29E-04 | |
F8 | 均值 | 3.22E+00 | 1.35E+02 | 9.46E-02 | 0 | 0 | 1.89E-15 | 6.49E-01 | 0 |
标准差 | 4.10E+00 | 1.27E+01 | 2.16E+01 | 0 | 0 | 1.04E-14 | 1.34E+00 | 0 | |
F9 | 均值 | 1.00E-13 | 1.72E+00 | 2.12E-15 | 1.05E-14 | 0 | 1.03E-14 | 2.42E-14 | 0 |
标准差 | 1.87E-14 | 0 | 4.30E-02 | 2.39E-15 | 0 | 6.07E-15 | 5.39E-15 | 0 | |
F10 | 均值 | 4.63E-03 | 1.31E-08 | 2.42E-05 | 0 | 4.44E-15 | 1.31E-03 | 6.79E-03 | 0 |
标准差 | 9.20E-03 | 3.12E-08 | 8.39E-05 | 0 | 0 | 7.17E-03 | 1.27E-02 | 0 |
表4 GWO及其各种变体的实验结果
Tab. 4 Experimental results of GWO and its variants
测试函数 | 指标 | GWO | EGWO | LGWO | NGWO | TGWO | OGWO | DGWO2 | GWO-THW |
---|---|---|---|---|---|---|---|---|---|
F1 | 均值 | 2.12E-27 | 1.17E-36 | 3.17E-30 | 1.16E-47 | 3.13E-76 | 5.09E-39 | 8.56E-63 | 3.01E-293 |
标准差 | 4.06E-27 | 1.05E-36 | 4.07E-20 | 2.72E-47 | 3.62E-76 | 1.43E-38 | 2.29E-62 | 0 | |
F2 | 均值 | 7.44E-17 | 2.84E-23 | 5.39E-19 | 2.92E-28 | 2.67E-41 | 1.40E-23 | 1.20E-35 | 1.42E-177 |
标准差 | 7.71E-17 | 1.47E-23 | 1.07E-02 | 4.16E-28 | 3.16E-41 | 2.43E-23 | 1.49E-35 | 0 | |
F3 | 均值 | 4.27E-06 | 6.19E-05 | 8.12E-08 | 9.98E-12 | 2.08E-39 | 4.83E-37 | 1.56E-60 | 1.03E-246 |
标准差 | 6.63E-06 | 1.21E-04 | 2.05E+00 | 1.99E-11 | 3.30E-39 | 1.88E-36 | 3.66E-60 | 0 | |
F4 | 均值 | 7.29E-07 | 2.43E-08 | 1.17E-08 | 7.15E-13 | 2.56E-29 | 2.34E-12 | 2.23E-14 | 2.12E-149 |
标准差 | 5.78E-07 | 4.08E-08 | 1.32E+00 | 7.60E-13 | 4.34E-29 | 5.21E-12 | 4.54E-14 | 6.78E-149 | |
F5 | 均值 | 2.69E+01 | 4.86E+01 | 8.35E+00 | 2.61E+01 | — | 2.67E+01 | 2.70E+01 | 2.67E+01 |
标准差 | 6.49E-01 | 9.44E+00 | 5.34E+00 | 3.96E-01 | — | 4.99E-01 | 5.91E-01 | 4.23E-01 | |
F6 | 均值 | 8.21E-01 | 0 | 2.69E-04 | 5.62E-01 | — | 5.59E-01 | 7.47E-01 | 1.20E-05 |
标准差 | 4.16E-01 | 0 | 2.30E-05 | 2.32E-01 | — | 3.34E-01 | 3.34E-01 | 5.42E-06 | |
F7 | 均值 | 2.60E-03 | 4.27E-03 | 3.02E-03 | 1.05E-03 | — | 1.69E-04 | 2.26E-03 | 1.48E-04 |
标准差 | 1.02E-03 | 1.50E-03 | 1.10E-03 | 2.32E-04 | — | 1.32E-04 | 1.14E-03 | 1.29E-04 | |
F8 | 均值 | 3.22E+00 | 1.35E+02 | 9.46E-02 | 0 | 0 | 1.89E-15 | 6.49E-01 | 0 |
标准差 | 4.10E+00 | 1.27E+01 | 2.16E+01 | 0 | 0 | 1.04E-14 | 1.34E+00 | 0 | |
F9 | 均值 | 1.00E-13 | 1.72E+00 | 2.12E-15 | 1.05E-14 | 0 | 1.03E-14 | 2.42E-14 | 0 |
标准差 | 1.87E-14 | 0 | 4.30E-02 | 2.39E-15 | 0 | 6.07E-15 | 5.39E-15 | 0 | |
F10 | 均值 | 4.63E-03 | 1.31E-08 | 2.42E-05 | 0 | 4.44E-15 | 1.31E-03 | 6.79E-03 | 0 |
标准差 | 9.20E-03 | 3.12E-08 | 8.39E-05 | 0 | 0 | 7.17E-03 | 1.27E-02 | 0 |
1 | 李雅丽,王淑琴,陈倩茹,等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22): 1-12. 10.3778/j.issn.1002-8331.2006-0291 |
LI Y L, WANG S Q, CHEN Q R, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22): 1-12. 10.3778/j.issn.1002-8331.2006-0291 | |
2 | 张文胜,郝孜奇,朱冀军,等. 基于改进灰狼算法优化BP神经网络的短时交通流预测模型[J]. 交通运输系统工程与信息, 2020, 20(2): 196-203. |
ZHANG W S, HAO Z Q, ZHU J J, et al. BP neural network model for short-time traffic flow forecasting based on transformed grey wolf optimizer algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 196-203. | |
3 | 王振东,刘尧迪,胡中栋,等. 利用改进灰狼算法优化BP神经网络的入侵检测[J]. 小型微型计算机系统, 2021, 42(4): 875-884. 10.3969/j.issn.1000-1220.2021.04.034 |
WANG Z D, LIU Y D, HU Z D, et al. Use improved grey wolf algorithm to optimize BP neural network intrusion detection[J]. Journal of Chinese Computer Systems, 2021, 42(4): 875-884. 10.3969/j.issn.1000-1220.2021.04.034 | |
4 | 李长安,谢宗奎,吴忠强,等. 改进灰狼算法及其在港口泊位调度中的应用[J]. 哈尔滨工业大学学报, 2021, 53(1): 101-108. 10.11918/201911117 |
LI C A, XIE Z K, WU Z Q, et al. Improved grey wolf algorithm and its application in port berth scheduling[J]. Journal of Harbin Institute of Technology, 2021, 53(1): 101-108. 10.11918/201911117 | |
5 | JOSHI H, ARORA S. Enhanced grey wolf optimization algorithm for global optimization[J]. Fundamenta Informaticae, 2017, 153(3): 235-264. 10.3233/fi-2017-1539 |
6 | HEIDARI A A, PAHLAVANI P. An efficient modified grey wolf optimizer with Lévy flight for optimization tasks[J]. Applied Soft Computing, 2017, 60: 115-134. 10.1016/j.asoc.2017.06.044 |
7 | 王敏,唐明珠. 一种新型非线性收敛因子的灰狼优化算法[J]. 计算机应用研究, 2016, 33(12): 3648-3653. 10.3969/j.issn.1001-3695.2016.12.029 |
WANG M, TANG M Z. Novel grey wolf optimization algorithm based on nonlinear convergence factor[J]. Application Research of Computers, 2016, 33(12): 3648-3653. 10.3969/j.issn.1001-3695.2016.12.029 | |
8 | YU X B, XU W Y, LI C L. Opposition-based learning grey wolf optimizer for global optimization[J]. Knowledge-Based Systems, 2021, 226: No.107139. 10.1016/j.knosys.2021.107139 |
9 | ZHANG X Q, ZHANG Y Y, MING Z F. Improved dynamic grey wolf optimizer[J]. Frontiers of Information Technology and Electronic Engineering, 2021, 22(6): 877-890. 10.1631/fitee.2000191 |
10 | 张佳琦,顾幸生. 基于改进灰狼算法优化的支持向量机锌耗预测[J].华东理工大学学报(自然科学版), 2022, 48(3): 343-351. 10.14135/j.cnki.1006-3080.20210128001 |
ZHANG J Q, GU X S. Zinc consumption forecast of support vector based on improved grey wolf algorithm optimization[J]. Journal of East China University of Science and Technology, 2022, 48(3): 343-351. 10.14135/j.cnki.1006-3080.20210128001 | |
11 | 刘继忠,谢毓顺,徐文斌,等. 采用动态双子群策略改进的灰狼算法及其在心电信号识别中的应用[J]. 传感技术学报, 2021, 34(3): 420-426. 10.3969/j.issn.1004-1699.2021.03.019 |
LIU J Z, XIE Y S, XU W B, et al. An improved grey wolf algorithm based on dynamic double-subgroup strategy and its application in ECG recognition[J]. Chinese Journal of Sensors and Actuators, 2021, 34(3): 420-426. 10.3969/j.issn.1004-1699.2021.03.019 | |
12 | SHABEERKHAN S, PADMA A. A novel GWO optimized pruning technique for inexact circuit design[J]. Microprocessors and Microsystems, 2020, 73: No.102975. 10.1016/j.micpro.2019.102975 |
13 | TAWHID M A, IBRAHIM A M. A hybridization of grey wolf optimizer and differential evolution for solving nonlinear systems[J]. Evolving Systems, 2020, 11(1): 65-87. 10.1007/s12530-019-09291-8 |
14 | 郝芃斐,池瑞,屈志坚,等. 求解铁路物流配送中心选址问题的改进灰狼优化算法[J]. 计算机应用, 2021, 41(10):2905-2911. 10.11772/j.issn.1001-9081.2020121994 |
HAO P F, CHI R, QU Z J, et al. Improved grey wolf optimizer for location selection problem of railway logistics distribution center[J]. Journal of Computer Applications, 2021, 41(10):2905-2911. 10.11772/j.issn.1001-9081.2020121994 | |
15 | 刘威,郭直清,姜丰,等. 协同围攻策略改进的灰狼算法及其PID参数优化[J]. 计算机科学与探索, 2023, 17(3):620-634. 10.3778/j.issn.1673-9418.2105051 |
LIU W, GUO Z Q, JIANG F, et al. Improved grey wolf optimizer based on cooperative attack strategy and its PID parameter optimization[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3):620-634. 10.3778/j.issn.1673-9418.2105051 | |
16 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. 10.1016/j.advengsoft.2013.12.007 |
17 | FENG J H, ZHANG J, ZHU X S, et al. A novel chaos optimization algorithm[J]. Multimedia Tools and Applications, 2017, 76(16): 17405-17436. 10.1007/s11042-016-3907-z |
18 | 张孟健,张浩,陈曦,等. 基于Cubic映射的灰狼优化算法及应用[J]. 计算机工程与科学, 2021, 43(11): 2035-2042. 10.3969/j.issn.1007-130X.2021.11.017 |
ZHANG M J, ZHANG H, CHEN X, et al. A grey wolf optimization algorithm based on Cubic mapping and its application[J]. Computer Engineering and Science, 2021, 43(11): 2035-2042. 10.3969/j.issn.1007-130X.2021.11.017 |
[1] | 任帅, 纪元法, 孙希延, 韦照川, 林子安. 基于改进灰狼优化与支持向量回归的滑坡位移预测[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 972-982. |
[2] | 高昊, 张庆科, 卜降龙, 李俊青, 张化祥. 基于协同变异与莱维飞行策略的教与学优化算法及其应用[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1355-1364. |
[3] | 邱仲睿, 苗虹, 曾成碧. 多策略融合的改进黏菌算法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 812-819. |
[4] | 陈俊, 何庆, 李守玉. 基于黄金莱维引导机制的阿基米德优化算法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2807-2815. |
[5] | 聂青青, 万定生, 朱跃龙, 李致家, 姚成. 基于时域卷积网络的水文模型[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1756-1761. |
[6] | 雍欣, 高岳林, 赫亚华, 王惠敏. 多策略融合的改进萤火虫算法[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3847-3855. |
[7] | 贾鹤鸣, 李瑶, 姜子超, 孙康健. 基于改进共生生物搜索算法的林火图像多阈值分割[J]. 计算机应用, 2021, 41(5): 1465-1470. |
[8] | 许飞雪, 刘勤明, 欧阳海玲, 叶春明. 基于性能合同的多部件系统维修策略模型优化[J]. 计算机应用, 2021, 41(4): 1184-1191. |
[9] | 郝芃斐, 池瑞, 屈志坚, 涂宏斌, 池学鑫, 张地友. 求解铁路物流配送中心选址问题的改进灰狼优化算法[J]. 计算机应用, 2021, 41(10): 2905-2911. |
[10] | 王博, 刘连生, 韩绍程, 祝世兴. 基于多策略融合的混合多目标蝗虫优化算法[J]. 计算机应用, 2020, 40(9): 2670-2676. |
[11] | 郑延斌, 席鹏雪, 王林林, 樊文鑫, 韩梦云. 基于人工势场法的多智能体编队避障方法[J]. 计算机应用, 2018, 38(12): 3380-3384. |
[12] | 李宁, 李刚, 邓中亮. 改进灰狼算法在土壤墒情监测预测系统中的应用[J]. 计算机应用, 2017, 37(4): 1202-1206. |
[13] | 徐同伟, 何庆, 吴意乐, 顾海霞. 基于改进离散果蝇优化算法的WSN广播路由算法[J]. 计算机应用, 2017, 37(4): 965-969. |
[14] | 陈闯, Ryad Chellali, 邢尹. 采用动态权重和概率扰动策略改进的灰狼优化算法[J]. 计算机应用, 2017, 37(12): 3493-3497. |
[15] | 石峰, 楼文高, 张博. 基于灰狼群智能最优化的神经网络PM2.5浓度预测[J]. 计算机应用, 2017, 37(10): 2854-2860. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||