| 1 | TIAN D P, SHI Z Z. MPSO: modified particle swarm optimization and its applications[J]. Swarm and Evolutionary Computation, 2018, 41:49-68.  10.1016/j.swevo.2018.01.011 | 
																													
																						| 2 | YANG K, YOU X M, LIU S, et al. A novel ant colony optimization based on game for traveling salesman problem[J]. Applied Intelligence, 2020, 50(12):4529-4542.  10.1007/s10489-020-01799-w | 
																													
																						| 3 | KOHLI M, ARORA S. Chaotic grey wolf optimization algorithm for constrained optimization problems[J]. Journal of Computational Design and Engineering, 2018, 5(4):458-472.  10.1016/j.jcde.2017.02.005 | 
																													
																						| 4 | ZHANG X M, KANG Q, CHENG J F, et al. A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer [J]. Applied Soft Computing, 2018, 67: 197-214.  10.1016/j.asoc.2018.02.049 | 
																													
																						| 5 | YANG X S. Firefly algorithms for multimodal optimization[C]// Proceedings of the 2009 International Symposium on Stochastic Algorithms, LNCS 5792. Berlin: Springer, 2009: 169-178. | 
																													
																						| 6 | 何栎,姚青山,李鹏,等. 基于利维飞行和变异算子的萤火虫算法[J]. 计算机工程与设计, 2020, 41(5):1327-1335. | 
																													
																						|  | HE L, YAO Q S, LI P, et al. Levy flight and mutation operator based firefly algorithm[J]. Computer Engineering and Design, 2020, 41(5):1327-1335. | 
																													
																						| 7 | WU J R, WANG Y G, BURRAGE K, et al. An improved firefly algorithm for global continuous optimization problems[J]. Expert Systems with Applications, 2020, 149: No.113340.  10.1016/j.eswa.2020.113340 | 
																													
																						| 8 | WANG C F, SONG W X. A novel firefly algorithm based on gender difference and its convergence[J]. Applied Soft Computing, 2019, 80:107-124.  10.1016/j.asoc.2019.03.010 | 
																													
																						| 9 | YELGHI A, KÖSE C. A modified firefly algorithm for global minimum optimization[J]. Applied Soft Computing, 2018, 62:29-44.  10.1016/j.asoc.2017.10.032 | 
																													
																						| 10 | 刘振,鲁华杰,任建存. 一种多样性增强的混合萤火虫算法[J]. 山西大学学报(自然科学版), 2021, 44(2):249-256.  10.13451/j.sxu.ns.2020034 | 
																													
																						|  | LIU Z, LU H J, REN J C. A diversity-enhanced hybrid firefly algorithm[J]. Journal of Shanxi University (Natural Science Edition), 2021, 44(2):249-256.  10.13451/j.sxu.ns.2020034 | 
																													
																						| 11 | 刘磊,罗蓉,尹胜. 基于精英个体划分的变步长萤火虫算法的特征选择方法[J]. 重庆邮电大学学报(自然科学版), 2020, 32(2):313-321. | 
																													
																						|  | LIU L, LUO R, YIN S. Feature selection method based on the dynamic step firefly algorithm with the elite individual dipartition[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(2): 313-321. | 
																													
																						| 12 | YAN B L, ZHAO Z, ZHOU Y C, et al. A particle swarm optimization algorithm with random learning mechanism and Levy flight for optimization of atomic clusters[J]. Computer Physics Communications, 2017, 219:79-86.  10.1016/j.cpc.2017.05.009 | 
																													
																						| 13 | PATHAK Y, ARYA K V, TIWARI S. Feature selection for image steganalysis using Levy flight-based grey wolf optimization[J]. Multimedia Tools and Applications, 2019, 78(2): 1473-1494.  10.1007/s11042-018-6155-6 | 
																													
																						| 14 | BARSHANDEH S, HAGHZADEH M. A new hybrid chaotic atom search optimization based on tree-seed algorithm and Levy flight for solving optimization problems[J]. Engineering with Computers, 2021, 37(4): 3079-3122.  10.1007/s00366-020-00994-0 | 
																													
																						| 15 | YANG X S. Firefly Algorithm, Lévy flights and global optimization[M]// BRAMER M, ELLIS R, PETRIDIS M. Research and Development in Intelligent Systems XXVI: Incorporating Applications and Innovations in Intelligent Systems XVII. London: Springer, 2010:209-218.  10.1007/978-1-84882-983-1_15 | 
																													
																						| 16 | TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]// Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Piscataway: IEEE, 2005:695-701.  10.1109/cimca.2005.1631428 | 
																													
																						| 17 | SIHWAIL R, OMAR K, ARIFFIN K A Z, et al. Improved Harris hawks optimization using elite opposition-based learning and novel search mechanism for feature selection[J]. IEEE Access, 2020, 8: 121127-121145.  10.1109/access.2020.3006473 | 
																													
																						| 18 | 郭雨鑫,刘升,高文欣,等. 精英反向学习与黄金正弦优化的HHO算法[J]. 计算机工程与应用, 2022, 58(10):153-161.  10.3778/j.issn.1002-8331.2011-0321 | 
																													
																						|  | GUO Y X, LIU S, GAO W X, et al. Elite opposition-based learning golden-sine Harris hawks optimization[J]. Computer Engineering and Applications, 2022, 58(10):153-161.  10.3778/j.issn.1002-8331.2011-0321 | 
																													
																						| 19 | EWEES A A, ELAZIZ M A, HOUSSEIN E H. Improved grasshopper optimization algorithm using opposition-based learning[J]. Expert Systems with Applications, 2018, 112: 156-172.  10.1016/j.eswa.2018.06.023 | 
																													
																						| 20 | JAMIL M, YANG X S. A literature survey of benchmark functions for global optimisation problems[J]. Journal of Mathematical Modeling and Numerical Optimisation, 2013, 4(2): 150-194.  10.1504/ijmmno.2013.055204 | 
																													
																						| 21 | KARABOGA D, AKAY B. A comparative study of Artificial Bee Colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1):108-132.  10.1016/j.amc.2009.03.090 |