《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (9): 2807-2815.DOI: 10.11772/j.issn.1001-9081.2021081438
收稿日期:
2021-08-10
修回日期:
2021-11-24
接受日期:
2021-11-25
发布日期:
2022-01-07
出版日期:
2022-09-10
通讯作者:
何庆
作者简介:
陈俊(1996—),男,贵州毕节人,硕士研究生,主要研究方向:进化计算、自然语言处理;基金资助:
Jun CHEN, Qing HE(), Shouyu LI
Received:
2021-08-10
Revised:
2021-11-24
Accepted:
2021-11-25
Online:
2022-01-07
Published:
2022-09-10
Contact:
Qing HE
About author:
CHEN Jun, born in 1996, M. S. candidate. His research interests include evolutionary computation, natural language processing.Supported by:
摘要:
针对标准阿基米德优化算法(AOA)在求解优化问题时存在全局探索能力弱、收敛速度慢和求解精度低等问题,提出一种多策略阿基米德优化算法(MSAOA)。首先,利用变区间初始化策略,使得初始种群尽可能地靠近全局最优解,从而提高初始解的质量;其次,提出黄金莱维引导机制,以提高算法在迭代后期的种群多样性;最后,在维持种群多样性的前提下,引入自适应波长算子,以达到提高算法搜索效率的目的。将所提算法与均衡器算法(EO)、正余弦算法(SCA)以及灰狼优化算法(GWO)在20个基准测试函数上进行比较实验。实验结果表明,所提算法具有更高的寻优精度和收敛速度,并将所提算法应用于4个机械设计实例中,再次验证了所提算法的有效性和优越性。
中图分类号:
陈俊, 何庆, 李守玉. 基于黄金莱维引导机制的阿基米德优化算法[J]. 计算机应用, 2022, 42(9): 2807-2815.
Jun CHEN, Qing HE, Shouyu LI. Archimedes optimization algorithm based on golden Levy guidance mechanism[J]. Journal of Computer Applications, 2022, 42(9): 2807-2815.
编号 | 函数名 | 解空间 | 理论值 |
---|---|---|---|
F1 | Sphere | [-100,100] D | 0 |
F2 | Schwefel2.22 | [-10,10] D | 0 |
F3 | Schwefel1.20 | [-100,100] D | 0 |
F4 | Schwefel2.21 | [-100,100] D | 0 |
F5 | SumSquares | [-10,10] D | 0 |
F6 | Zakharov | [ | 0 |
F7 | Quartic | [-1.28,1.28] D | 0 |
F8 | Apline | [-10,10] D | 0 |
F9 | Rastraign | [-32,32] D | 0 |
F10 | Ackley | [-600,600] D | 0 |
F11 | Griewank | [-600,600] D | 0 |
F12 | Penalized 1 | [-50,50] D | 0 |
F13 | Penalized 2 | [-50,50] D | 0 |
F14 | Levy | [-10,10] D | 0 |
F15 | Foxholes | [-65.25,65.25]2 | 1.00 |
F16 | Kowalik’s | [-5,5]2 | 3.08E-04 |
F17 | Six-Hump | [-5,5]2 | -1.03E+00 |
F18 | Branin | [ | 3.98E-01 |
F19 | Goldstein-Price | [-2,2]2 | 3.00E+00 |
F20 | Eggcrate | [-2π,2π]2 | 0 |
表1 基准测试函数
Tab. 1 Benchmark test functions
编号 | 函数名 | 解空间 | 理论值 |
---|---|---|---|
F1 | Sphere | [-100,100] D | 0 |
F2 | Schwefel2.22 | [-10,10] D | 0 |
F3 | Schwefel1.20 | [-100,100] D | 0 |
F4 | Schwefel2.21 | [-100,100] D | 0 |
F5 | SumSquares | [-10,10] D | 0 |
F6 | Zakharov | [ | 0 |
F7 | Quartic | [-1.28,1.28] D | 0 |
F8 | Apline | [-10,10] D | 0 |
F9 | Rastraign | [-32,32] D | 0 |
F10 | Ackley | [-600,600] D | 0 |
F11 | Griewank | [-600,600] D | 0 |
F12 | Penalized 1 | [-50,50] D | 0 |
F13 | Penalized 2 | [-50,50] D | 0 |
F14 | Levy | [-10,10] D | 0 |
F15 | Foxholes | [-65.25,65.25]2 | 1.00 |
F16 | Kowalik’s | [-5,5]2 | 3.08E-04 |
F17 | Six-Hump | [-5,5]2 | -1.03E+00 |
F18 | Branin | [ | 3.98E-01 |
F19 | Goldstein-Price | [-2,2]2 | 3.00E+00 |
F20 | Eggcrate | [-2π,2π]2 | 0 |
算法 | 主要参数 |
---|---|
AOA | C1=2,C2=6,C3=2,C4=0.5,u=0.9,l=0.1 |
MSAOA | β=2,α=1.002 6,C1=2,C2=6,C3=2,C4=0.5,u=0.9,l=0.1 |
PSO | C1=2, C2=2, wmax=0.9, wmin=0.2 |
DE | F=0.4, CR(Crossover Rate)=0.5 |
ACO | |
SCA | a=2 |
GWO | afirst=2, afinal=0 |
EO | GP(Generation Probability)=0.5, α1=2, α2=1 |
表2 算法内参数
Tab. 2 Parameters in algorithms
算法 | 主要参数 |
---|---|
AOA | C1=2,C2=6,C3=2,C4=0.5,u=0.9,l=0.1 |
MSAOA | β=2,α=1.002 6,C1=2,C2=6,C3=2,C4=0.5,u=0.9,l=0.1 |
PSO | C1=2, C2=2, wmax=0.9, wmin=0.2 |
DE | F=0.4, CR(Crossover Rate)=0.5 |
ACO | |
SCA | a=2 |
GWO | afirst=2, afinal=0 |
EO | GP(Generation Probability)=0.5, α1=2, α2=1 |
函数 | AOA | AOA1 | AOA2 | AOA3 | MSAOA | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
F1 | 4.80E-176 | 0.00E+00 | 9.67E-175 | 0.00E+00 | 2.78E-292 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F2 | 1.58E-89 | 5.97E-89 | 8.51E-88 | 3.29E-87 | 3.16E-140 | 1.73E-139 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F3 | 2.26E-146 | 1.05E-145 | 1.84E-143 | 1.01E-142 | 7.67E-248 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F4 | 4.17E-85 | 1.56E-84 | 1.48E-82 | 4.82E-82 | 6.75E-145 | 2.05E-144 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F5 | 1.80E-182 | 0.00E+00 | 1.55E-173 | 0.00E+00 | 2.59E-286 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F6 | 1.66E-93 | 9.09E-93 | 1.36E-95 | 7.47E-95 | 6.69E-107 | 3.66E-106 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F7 | 2.96E-04 | 1.94E-04 | 2.46E-04 | 1.51E-04 | 5.24E-04 | 5.50E-04 | 3.67E-05 | 4.15E-05 | 6.24E-05 | 3.49E-05 |
F8 | 3.61E-89 | 1.97E-88 | 2.06E+00 | 3.39E+00 | 1.79E-146 | 8.91E-146 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F9 | 1.36E-15 | 1.23E-15 | 2.31E-15 | 1.77E-15 | 8.88E-16 | 0.00E+00 | 8.88E-16 | 0.00E+00 | 8.88E-16 | 0.00E+00 |
F10 | 4.00E+00 | 2.19E+01 | 7.71E+01 | 4.55E+01 | 2.54E+00 | 1.39E+01 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F11 | 0.00E+00 | 0.00E+00 | 1.03E-03 | 3.95E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F12 | 8.34E-01 | 1.73E-01 | 7.84E-01 | 1.99E-01 | 7.56E-01 | 1.91E-01 | 3.50E-01 | 1.01E-01 | 5.68E-01 | 2.46E-01 |
F13 | 2.91E+00 | 5.42E-02 | 1.25E+00 | 1.42E+00 | 2.89E+00 | 4.75E-02 | 2.74E+00 | 1.07E-01 | 1.46E+00 | 1.25E+00 |
F14 | 2.41E+00 | 1.86E-01 | 3.64E-01 | 7.40E-01 | 2.24E+00 | 2.35E-01 | 1.95E+00 | 2.21E-01 | 3.86E-01 | 6.81E-01 |
F15 | 1.12E+00 | 3.07E-01 | 2.20E+00 | 2.37E+00 | 1.03E+00 | 6.20E-02 | 2.14E+00 | 2.57E+00 | 3.90E+00 | 4.10E+00 |
F16 | 7.73E-04 | 4.41E-04 | 4.86E-03 | 8.16E-03 | 8.47E-04 | 5.73E-04 | 3.34E-04 | 4.46E-05 | 3.95E-04 | 1.05E-04 |
F17 | -1.03E+00 | 6.11E-05 | -1.03E+00 | 6.18E-04 | -1.03E+00 | 7.35E-05 | -1.03E+00 | 1.06E-05 | -1.03E+00 | 2.82E-06 |
F18 | 4.09E-01 | 3.85E-02 | 4.08E-01 | 2.96E-02 | 3.99E-01 | 2.22E-03 | 3.98E-01 | 8.12E-05 | 3.98E-01 | 9.88E-06 |
F19 | 3.04E+00 | 1.74E-01 | 1.96E+01 | 2.31E+01 | 3.29E+00 | 1.11E+00 | 3.00E+00 | 3.53E-05 | 3.00E+00 | 9.81E-05 |
F20 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.48E-323 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
表3 基准测试函数上的测试结果
Tab. 3 Test results on benchmark test functions
函数 | AOA | AOA1 | AOA2 | AOA3 | MSAOA | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
F1 | 4.80E-176 | 0.00E+00 | 9.67E-175 | 0.00E+00 | 2.78E-292 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F2 | 1.58E-89 | 5.97E-89 | 8.51E-88 | 3.29E-87 | 3.16E-140 | 1.73E-139 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F3 | 2.26E-146 | 1.05E-145 | 1.84E-143 | 1.01E-142 | 7.67E-248 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F4 | 4.17E-85 | 1.56E-84 | 1.48E-82 | 4.82E-82 | 6.75E-145 | 2.05E-144 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F5 | 1.80E-182 | 0.00E+00 | 1.55E-173 | 0.00E+00 | 2.59E-286 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F6 | 1.66E-93 | 9.09E-93 | 1.36E-95 | 7.47E-95 | 6.69E-107 | 3.66E-106 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F7 | 2.96E-04 | 1.94E-04 | 2.46E-04 | 1.51E-04 | 5.24E-04 | 5.50E-04 | 3.67E-05 | 4.15E-05 | 6.24E-05 | 3.49E-05 |
F8 | 3.61E-89 | 1.97E-88 | 2.06E+00 | 3.39E+00 | 1.79E-146 | 8.91E-146 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F9 | 1.36E-15 | 1.23E-15 | 2.31E-15 | 1.77E-15 | 8.88E-16 | 0.00E+00 | 8.88E-16 | 0.00E+00 | 8.88E-16 | 0.00E+00 |
F10 | 4.00E+00 | 2.19E+01 | 7.71E+01 | 4.55E+01 | 2.54E+00 | 1.39E+01 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F11 | 0.00E+00 | 0.00E+00 | 1.03E-03 | 3.95E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
F12 | 8.34E-01 | 1.73E-01 | 7.84E-01 | 1.99E-01 | 7.56E-01 | 1.91E-01 | 3.50E-01 | 1.01E-01 | 5.68E-01 | 2.46E-01 |
F13 | 2.91E+00 | 5.42E-02 | 1.25E+00 | 1.42E+00 | 2.89E+00 | 4.75E-02 | 2.74E+00 | 1.07E-01 | 1.46E+00 | 1.25E+00 |
F14 | 2.41E+00 | 1.86E-01 | 3.64E-01 | 7.40E-01 | 2.24E+00 | 2.35E-01 | 1.95E+00 | 2.21E-01 | 3.86E-01 | 6.81E-01 |
F15 | 1.12E+00 | 3.07E-01 | 2.20E+00 | 2.37E+00 | 1.03E+00 | 6.20E-02 | 2.14E+00 | 2.57E+00 | 3.90E+00 | 4.10E+00 |
F16 | 7.73E-04 | 4.41E-04 | 4.86E-03 | 8.16E-03 | 8.47E-04 | 5.73E-04 | 3.34E-04 | 4.46E-05 | 3.95E-04 | 1.05E-04 |
F17 | -1.03E+00 | 6.11E-05 | -1.03E+00 | 6.18E-04 | -1.03E+00 | 7.35E-05 | -1.03E+00 | 1.06E-05 | -1.03E+00 | 2.82E-06 |
F18 | 4.09E-01 | 3.85E-02 | 4.08E-01 | 2.96E-02 | 3.99E-01 | 2.22E-03 | 3.98E-01 | 8.12E-05 | 3.98E-01 | 9.88E-06 |
F19 | 3.04E+00 | 1.74E-01 | 1.96E+01 | 2.31E+01 | 3.29E+00 | 1.11E+00 | 3.00E+00 | 3.53E-05 | 3.00E+00 | 9.81E-05 |
F20 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.48E-323 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
函数 | MSAOA | PSO | GWO | SCA | EO | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
F1 | 0.00E+00 | 0.00E+00 | 2.96E+00 | 1.12E+00 | 1.88E-29 | 2.48E-29 | 2.96E+00 | 1.12E+00 | 1.88E-29 | 2.48E-29 |
F2 | 0.00E+00 | 0.00E+00 | 1.27E+01 | 5.80E+00 | 5.01E-18 | 2.08E-18 | 1.27E+01 | 5.80E+00 | 5.01E-18 | 2.08E-18 |
F3 | 0.00E+00 | 0.00E+00 | 1.04E+04 | 1.92E+03 | 5.91E+00 | 1.09E+01 | 1.04E+04 | 1.92E+03 | 5.91E+00 | 1.09E+01 |
F4 | 0.00E+00 | 0.00E+00 | 8.89E+00 | 1.43E+00 | 1.70E-03 | 2.69E-03 | 8.89E+00 | 1.43E+00 | 1.70E-03 | 2.69E-03 |
F5 | 0.00E+00 | 0.00E+00 | 9.60E+01 | 6.00E+01 | 2.11E-30 | 1.94E-30 | 9.60E+01 | 6.00E+01 | 2.11E-30 | 1.94E-30 |
F6 | 0.00E+00 | 0.00E+00 | 3.54E+03 | 1.59E+03 | 3.00E+00 | 3.72E+00 | 3.54E+03 | 1.59E+03 | 3.00E+00 | 3.72E+00 |
F7 | 4.89E-05 | 3.97E-05 | 1.46E+03 | 3.48E+02 | 2.72E-03 | 1.24E-03 | 1.46E+03 | 3.48E+02 | 2.72E-03 | 1.24E-03 |
F8 | 0.00E+00 | 0.00E+00 | 7.21E+00 | 2.87E+00 | 1.85E-04 | 5.09E-04 | 7.21E+00 | 2.87E+00 | 1.85E-04 | 5.09E-04 |
F9 | 0.00E+00 | 0.00E+00 | 4.56E+02 | 8.50E+01 | 6.65E-01 | 1.92E+00 | 4.56E+02 | 8.50E+01 | 6.65E-01 | 1.92E+00 |
F10 | 8.88E-16 | 0.00E+00 | 2.70E+00 | 2.90E-01 | 1.13E-13 | 1.12E-14 | 2.70E+00 | 2.90E-01 | 1.13E-13 | 1.12E-14 |
F11 | 0.00E+00 | 0.00E+00 | 4.02E-02 | 2.01E-02 | 1.31E-03 | 5.35E-03 | 4.02E-02 | 2.01E-02 | 1.31E-03 | 5.35E-03 |
F12 | 8.62E-01 | 1.93E-01 | 1.96E+00 | 9.85E-01 | 2.80E-01 | 6.13E-02 | 1.96E+00 | 9.85E-01 | 2.80E-01 | 6.13E-02 |
F13 | 5.25E+00 | 4.90E+00 | 1.59E+01 | 1.08E+01 | 6.32E+00 | 4.37E-01 | 1.59E+01 | 1.08E+01 | 6.32E+00 | 4.37E-01 |
F14 | 6.15E-01 | 1.61E+00 | 5.38E+01 | 1.79E+01 | 6.56E+00 | 4.02E-01 | 5.38E+01 | 1.79E+01 | 6.56E+00 | 4.02E-01 |
F15 | 3.87E+00 | 4.12E+00 | 3.37E+00 | 2.32E+00 | 5.43E+00 | 4.49E+00 | 3.37E+00 | 2.32E+00 | 5.43E+00 | 4.49E+00 |
F16 | 3.99E-04 | 1.06E-04 | 8.41E-04 | 2.93E-04 | 1.76E-03 | 5.07E-03 | 8.41E-04 | 2.93E-04 | 1.76E-03 | 5.07E-03 |
F17 | -1.03E+00 | 2.29E-05 | -1.03E+00 | 6.78E-16 | -1.03E+00 | 5.39E-09 | -1.03E+00 | 6.78E-16 | -1.03E+00 | 5.39E-09 |
F18 | 3.98E-01 | 1.64E-04 | 3.98E-01 | 0.00E+00 | 3.98E-01 | 9.51E-07 | 3.98E-01 | 0.00E+00 | 3.98E-01 | 9.51E-07 |
F19 | 3.00E+00 | 8.34E-05 | 3.00E+00 | 6.12E-16 | 5.70E+00 | 1.48E+01 | 3.00E+00 | 6.12E-16 | 5.70E+00 | 1.48E+01 |
F20 | 0.00E+00 | 0.00E+00 | 3.28E-121 | 9.90E-121 | 0.00E+00 | 0.00E+00 | 3.28E-121 | 9.90E-121 | 0.00E+00 | 0.00E+00 |
表4 所提算法与四种群智能算法结果比较
Tab. 4 Comparison of results of the proposed algorithm and four swarm intelligence algorithms
函数 | MSAOA | PSO | GWO | SCA | EO | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
F1 | 0.00E+00 | 0.00E+00 | 2.96E+00 | 1.12E+00 | 1.88E-29 | 2.48E-29 | 2.96E+00 | 1.12E+00 | 1.88E-29 | 2.48E-29 |
F2 | 0.00E+00 | 0.00E+00 | 1.27E+01 | 5.80E+00 | 5.01E-18 | 2.08E-18 | 1.27E+01 | 5.80E+00 | 5.01E-18 | 2.08E-18 |
F3 | 0.00E+00 | 0.00E+00 | 1.04E+04 | 1.92E+03 | 5.91E+00 | 1.09E+01 | 1.04E+04 | 1.92E+03 | 5.91E+00 | 1.09E+01 |
F4 | 0.00E+00 | 0.00E+00 | 8.89E+00 | 1.43E+00 | 1.70E-03 | 2.69E-03 | 8.89E+00 | 1.43E+00 | 1.70E-03 | 2.69E-03 |
F5 | 0.00E+00 | 0.00E+00 | 9.60E+01 | 6.00E+01 | 2.11E-30 | 1.94E-30 | 9.60E+01 | 6.00E+01 | 2.11E-30 | 1.94E-30 |
F6 | 0.00E+00 | 0.00E+00 | 3.54E+03 | 1.59E+03 | 3.00E+00 | 3.72E+00 | 3.54E+03 | 1.59E+03 | 3.00E+00 | 3.72E+00 |
F7 | 4.89E-05 | 3.97E-05 | 1.46E+03 | 3.48E+02 | 2.72E-03 | 1.24E-03 | 1.46E+03 | 3.48E+02 | 2.72E-03 | 1.24E-03 |
F8 | 0.00E+00 | 0.00E+00 | 7.21E+00 | 2.87E+00 | 1.85E-04 | 5.09E-04 | 7.21E+00 | 2.87E+00 | 1.85E-04 | 5.09E-04 |
F9 | 0.00E+00 | 0.00E+00 | 4.56E+02 | 8.50E+01 | 6.65E-01 | 1.92E+00 | 4.56E+02 | 8.50E+01 | 6.65E-01 | 1.92E+00 |
F10 | 8.88E-16 | 0.00E+00 | 2.70E+00 | 2.90E-01 | 1.13E-13 | 1.12E-14 | 2.70E+00 | 2.90E-01 | 1.13E-13 | 1.12E-14 |
F11 | 0.00E+00 | 0.00E+00 | 4.02E-02 | 2.01E-02 | 1.31E-03 | 5.35E-03 | 4.02E-02 | 2.01E-02 | 1.31E-03 | 5.35E-03 |
F12 | 8.62E-01 | 1.93E-01 | 1.96E+00 | 9.85E-01 | 2.80E-01 | 6.13E-02 | 1.96E+00 | 9.85E-01 | 2.80E-01 | 6.13E-02 |
F13 | 5.25E+00 | 4.90E+00 | 1.59E+01 | 1.08E+01 | 6.32E+00 | 4.37E-01 | 1.59E+01 | 1.08E+01 | 6.32E+00 | 4.37E-01 |
F14 | 6.15E-01 | 1.61E+00 | 5.38E+01 | 1.79E+01 | 6.56E+00 | 4.02E-01 | 5.38E+01 | 1.79E+01 | 6.56E+00 | 4.02E-01 |
F15 | 3.87E+00 | 4.12E+00 | 3.37E+00 | 2.32E+00 | 5.43E+00 | 4.49E+00 | 3.37E+00 | 2.32E+00 | 5.43E+00 | 4.49E+00 |
F16 | 3.99E-04 | 1.06E-04 | 8.41E-04 | 2.93E-04 | 1.76E-03 | 5.07E-03 | 8.41E-04 | 2.93E-04 | 1.76E-03 | 5.07E-03 |
F17 | -1.03E+00 | 2.29E-05 | -1.03E+00 | 6.78E-16 | -1.03E+00 | 5.39E-09 | -1.03E+00 | 6.78E-16 | -1.03E+00 | 5.39E-09 |
F18 | 3.98E-01 | 1.64E-04 | 3.98E-01 | 0.00E+00 | 3.98E-01 | 9.51E-07 | 3.98E-01 | 0.00E+00 | 3.98E-01 | 9.51E-07 |
F19 | 3.00E+00 | 8.34E-05 | 3.00E+00 | 6.12E-16 | 5.70E+00 | 1.48E+01 | 3.00E+00 | 6.12E-16 | 5.70E+00 | 1.48E+01 |
F20 | 0.00E+00 | 0.00E+00 | 3.28E-121 | 9.90E-121 | 0.00E+00 | 0.00E+00 | 3.28E-121 | 9.90E-121 | 0.00E+00 | 0.00E+00 |
函数 | AOA | AOA1 | AOA2 | AOA3 | PSO | GWO | SCA |
---|---|---|---|---|---|---|---|
+/=/- | 18/1/1 | 17/1/2 | 13/3/4 | 9/8/3 | 19/0/1 | 17/1/2 | 20/0/0 |
F1 | 1.21E-12 | 1.21E-12 | 1.70E-08 | NaN | 1.21E-12 | 1.21E-12 | 1.21E-12 |
F2 | 1.21E-12 | 1.21E-12 | 1.21E-12 | NaN | 1.21E-12 | 1.21E-12 | 1.21E-12 |
F3 | 1.21E-12 | 1.21E-12 | 1.21E-12 | NaN | 1.21E-12 | 1.21E-12 | 1.21E-12 |
F4 | 1.21E-12 | 1.21E-12 | 1.21E-12 | NaN | 1.21E-12 | 1.21E-12 | 1.21E-12 |
F5 | 4.18E-02 | 1.31E-03 | NaN | NaN | 1.21E-12 | 4.55E-13 | 1.21E-12 |
F6 | 1.61E-01 | NaN | 1.61E-01 | NaN | 1.21E-12 | NaN | 1.21E-12 |
F7 | 3.02E-11 | 6.95E-01 | 1.78E-10 | 6.07E-11 | 3.16E-05 | 3.32E-06 | 3.02E-11 |
F8 | 3.18E-04 | 1.00E-03 | 3.99E-04 | 7.96E-01 | 7.76E-11 | 3.02E-11 | 1.19E-06 |
F9 | 2.14E-02 | 6.18E-04 | NaN | NaN | 1.21E-12 | 2.54E-13 | 1.21E-12 |
F10 | NaN | 2.16E-02 | NaN | NaN | 1.21E-12 | 1.61E-01 | 1.21E-12 |
F11 | 7.22E-06 | 6.91E-04 | 1.11E-04 | 1.24E-03 | 3.02E-11 | 3.02E-11 | 7.74E-06 |
F12 | 8.10E-10 | 1.67E-01 | 2.44E-09 | 1.75E-05 | 3.50E-09 | 1.86E-01 | 8.88E-06 |
F13 | 3.18E-03 | 2.42E-02 | 2.24E-02 | 2.07E-02 | 9.94E-01 | 2.24E-02 | 2.27E-03 |
F14 | 1.68E-03 | 3.83E-06 | 6.97E-03 | 4.92E-01 | 7.69E-12 | 5.49E-11 | 1.53E-05 |
F15 | 2.25E-04 | 1.20E-08 | 5.97E-05 | 2.68E-06 | 9.83E-08 | 8.50E-02 | 2.20E-07 |
F16 | 1.08E-04 | 3.08E-04 | 9.11E-01 | 1.79E-06 | 4.79E-08 | 1.55E-02 | 1.10E-09 |
F17 | 9.90E-11 | 2.66E-09 | 2.86E-02 | 5.18E-07 | 5.77E-11 | 5.45E-09 | 3.01E-11 |
F18 | 5.09E-06 | 3.82E-09 | 6.84E-01 | 7.96E-01 | 1.21E-12 | 1.84E-02 | 2.27E-03 |
F19 | 5.27E-05 | 2.83E-08 | 3.95E-01 | 3.50E-03 | 1.21E-12 | 7.24E-02 | 9.26E-09 |
F20 | 1.21E-12 | 1.21E-12 | 1.21E-12 | NaN | 1.21E-12 | 1.21E-12 | 1.21E-12 |
表5 基准函数上Wilcoxon 秩和检验p值
Tab. 5 p-values for Wilcoxon rank-sum test on benchmark functions
函数 | AOA | AOA1 | AOA2 | AOA3 | PSO | GWO | SCA |
---|---|---|---|---|---|---|---|
+/=/- | 18/1/1 | 17/1/2 | 13/3/4 | 9/8/3 | 19/0/1 | 17/1/2 | 20/0/0 |
F1 | 1.21E-12 | 1.21E-12 | 1.70E-08 | NaN | 1.21E-12 | 1.21E-12 | 1.21E-12 |
F2 | 1.21E-12 | 1.21E-12 | 1.21E-12 | NaN | 1.21E-12 | 1.21E-12 | 1.21E-12 |
F3 | 1.21E-12 | 1.21E-12 | 1.21E-12 | NaN | 1.21E-12 | 1.21E-12 | 1.21E-12 |
F4 | 1.21E-12 | 1.21E-12 | 1.21E-12 | NaN | 1.21E-12 | 1.21E-12 | 1.21E-12 |
F5 | 4.18E-02 | 1.31E-03 | NaN | NaN | 1.21E-12 | 4.55E-13 | 1.21E-12 |
F6 | 1.61E-01 | NaN | 1.61E-01 | NaN | 1.21E-12 | NaN | 1.21E-12 |
F7 | 3.02E-11 | 6.95E-01 | 1.78E-10 | 6.07E-11 | 3.16E-05 | 3.32E-06 | 3.02E-11 |
F8 | 3.18E-04 | 1.00E-03 | 3.99E-04 | 7.96E-01 | 7.76E-11 | 3.02E-11 | 1.19E-06 |
F9 | 2.14E-02 | 6.18E-04 | NaN | NaN | 1.21E-12 | 2.54E-13 | 1.21E-12 |
F10 | NaN | 2.16E-02 | NaN | NaN | 1.21E-12 | 1.61E-01 | 1.21E-12 |
F11 | 7.22E-06 | 6.91E-04 | 1.11E-04 | 1.24E-03 | 3.02E-11 | 3.02E-11 | 7.74E-06 |
F12 | 8.10E-10 | 1.67E-01 | 2.44E-09 | 1.75E-05 | 3.50E-09 | 1.86E-01 | 8.88E-06 |
F13 | 3.18E-03 | 2.42E-02 | 2.24E-02 | 2.07E-02 | 9.94E-01 | 2.24E-02 | 2.27E-03 |
F14 | 1.68E-03 | 3.83E-06 | 6.97E-03 | 4.92E-01 | 7.69E-12 | 5.49E-11 | 1.53E-05 |
F15 | 2.25E-04 | 1.20E-08 | 5.97E-05 | 2.68E-06 | 9.83E-08 | 8.50E-02 | 2.20E-07 |
F16 | 1.08E-04 | 3.08E-04 | 9.11E-01 | 1.79E-06 | 4.79E-08 | 1.55E-02 | 1.10E-09 |
F17 | 9.90E-11 | 2.66E-09 | 2.86E-02 | 5.18E-07 | 5.77E-11 | 5.45E-09 | 3.01E-11 |
F18 | 5.09E-06 | 3.82E-09 | 6.84E-01 | 7.96E-01 | 1.21E-12 | 1.84E-02 | 2.27E-03 |
F19 | 5.27E-05 | 2.83E-08 | 3.95E-01 | 3.50E-03 | 1.21E-12 | 7.24E-02 | 9.26E-09 |
F20 | 1.21E-12 | 1.21E-12 | 1.21E-12 | NaN | 1.21E-12 | 1.21E-12 | 1.21E-12 |
算法 | Best | Worst | Mean | Std |
---|---|---|---|---|
GSA | 1.857E+00 | 3.412E+00 | 2.690E+00 | 3.856E-01 |
PSO | 1.089E+14 | 1.089E+14 | 1.089E+14 | 4.768E-02 |
BBO | 1.089E+14 | 1.089E+14 | 1.089E+14 | 1.662E-01 |
DE | 1.089E+14 | 1.089E+14 | 1.089E+14 | 4.768E-02 |
ACO | 1.692E+05 | 1.692E+05 | 1.692E+05 | 2.960E-11 |
SSA | 1.698E+00 | 1.958E+00 | 1.762E+00 | 5.742E-02 |
SCA | 1.762E+00 | 1.922E+00 | 1.826E+00 | 4.444E-02 |
AOA | 1.695E+00 | 1.811E+00 | 1.701E+00 | 2.151E-02 |
MSAOA | 1.695E+00 | 1.700E+00 | 1.696E+00 | 1.089E-03 |
表6 九种不同算法求解焊接梁设计问题的对比
Tab.6 Comparison of 9 different algorithms for solving welded beam design problem
算法 | Best | Worst | Mean | Std |
---|---|---|---|---|
GSA | 1.857E+00 | 3.412E+00 | 2.690E+00 | 3.856E-01 |
PSO | 1.089E+14 | 1.089E+14 | 1.089E+14 | 4.768E-02 |
BBO | 1.089E+14 | 1.089E+14 | 1.089E+14 | 1.662E-01 |
DE | 1.089E+14 | 1.089E+14 | 1.089E+14 | 4.768E-02 |
ACO | 1.692E+05 | 1.692E+05 | 1.692E+05 | 2.960E-11 |
SSA | 1.698E+00 | 1.958E+00 | 1.762E+00 | 5.742E-02 |
SCA | 1.762E+00 | 1.922E+00 | 1.826E+00 | 4.444E-02 |
AOA | 1.695E+00 | 1.811E+00 | 1.701E+00 | 2.151E-02 |
MSAOA | 1.695E+00 | 1.700E+00 | 1.696E+00 | 1.089E-03 |
算法 | Best | Worst | Mean | Std |
---|---|---|---|---|
GSA | 1.275E-02 | 1.883E+07 | 6.276E+05 | 3.438E+06 |
PSO | 3.778E+10 | 3.778E+10 | 3.778E+10 | 2.328E-05 |
BBO | 3.778E+10 | 3.778E+10 | 3.778E+10 | 1.309E+06 |
DE | 3.778E+10 | 3.778E+10 | 3.778E+10 | 1.079E+06 |
ACO | 6.303E+10 | 3.791E+11 | 1.686E+11 | 7.881E+10 |
SSA | 1.267E-02 | 2.584E-02 | 1.357E-02 | 2.437E-03 |
SCA | 1.272E-02 | 1.322E-02 | 1.301E-02 | 1.604E-04 |
AOA | 1.267E-02 | 1.533E-02 | 1.307E-02 | 5.740E-04 |
MSAOA | 1.267E-02 | 1.325E-02 | 1.272E-02 | 1.298E-04 |
表7 九种算法求解压缩弹簧设计问题的对比
Tab.7 Comparison of 9 algorithms for solving compression spring design problem
算法 | Best | Worst | Mean | Std |
---|---|---|---|---|
GSA | 1.275E-02 | 1.883E+07 | 6.276E+05 | 3.438E+06 |
PSO | 3.778E+10 | 3.778E+10 | 3.778E+10 | 2.328E-05 |
BBO | 3.778E+10 | 3.778E+10 | 3.778E+10 | 1.309E+06 |
DE | 3.778E+10 | 3.778E+10 | 3.778E+10 | 1.079E+06 |
ACO | 6.303E+10 | 3.791E+11 | 1.686E+11 | 7.881E+10 |
SSA | 1.267E-02 | 2.584E-02 | 1.357E-02 | 2.437E-03 |
SCA | 1.272E-02 | 1.322E-02 | 1.301E-02 | 1.604E-04 |
AOA | 1.267E-02 | 1.533E-02 | 1.307E-02 | 5.740E-04 |
MSAOA | 1.267E-02 | 1.325E-02 | 1.272E-02 | 1.298E-04 |
算法 | Best | Worst | Mean | Std |
---|---|---|---|---|
GSA | 6.34E+03 | 1.11E+05 | 2.24E+04 | 2.71E+04 |
PSO | 2.04E+05 | 2.04E+05 | 2.04E+05 | 5.64E+00 |
BBO | 2.04E+05 | 2.11E+05 | 2.06E+05 | 1.92E+03 |
DE | 2.04E+05 | 2.04E+05 | 2.04E+05 | 1.98E-01 |
ACO | 6.10E+05 | 1.46E+07 | 3.24E+06 | 2.46E+06 |
SSA | 5.95E+03 | 1.24E+04 | 7.22E+03 | 1.78E+03 |
SCA | 6.06E+03 | 8.21E+03 | 6.87E+03 | 6.06E+02 |
AOA | 5.89E+03 | 7.28E+03 | 6.42E+03 | 4.92E+02 |
MSAOA | 5.89E+03 | 6.66E+03 | 6.28E+03 | 2.91E+02 |
表8 九种算法求解压力管道设计问题的对比
Tab. 8 Comparison of 9 algorithms for solving pressure piping design problem
算法 | Best | Worst | Mean | Std |
---|---|---|---|---|
GSA | 6.34E+03 | 1.11E+05 | 2.24E+04 | 2.71E+04 |
PSO | 2.04E+05 | 2.04E+05 | 2.04E+05 | 5.64E+00 |
BBO | 2.04E+05 | 2.11E+05 | 2.06E+05 | 1.92E+03 |
DE | 2.04E+05 | 2.04E+05 | 2.04E+05 | 1.98E-01 |
ACO | 6.10E+05 | 1.46E+07 | 3.24E+06 | 2.46E+06 |
SSA | 5.95E+03 | 1.24E+04 | 7.22E+03 | 1.78E+03 |
SCA | 6.06E+03 | 8.21E+03 | 6.87E+03 | 6.06E+02 |
AOA | 5.89E+03 | 7.28E+03 | 6.42E+03 | 4.92E+02 |
MSAOA | 5.89E+03 | 6.66E+03 | 6.28E+03 | 2.91E+02 |
算法 | Best | Worst | Mean | Std |
---|---|---|---|---|
GSA | 3.3615E+00 | 9.9425E+00 | 6.946E+00 | 1.790E+00 |
PSO | 1.3400E+00 | 1.3400E+00 | 1.340E+00 | 9.763E-06 |
BBO | 1.3400E+00 | 1.3427E+00 | 1.341E+00 | 3.993E-04 |
DE | 1.3400E+00 | 1.3401E+00 | 1.340E+00 | 1.897E-05 |
ACO | 6.9951E+10 | 6.9951E+10 | 6.995E+10 | 0.000E+00 |
SSA | 1.3400E+00 | 1.3401E+00 | 1.340E+00 | 3.446E-05 |
SCA | 1.3517E+00 | 1.4292E+00 | 1.340E+00 | 2.096E-02 |
AOA | 1.3400E+00 | 1.3401E+00 | 1.340E+00 | 6.846E-05 |
MSAOA | 1.3400E+00 | 1.3400E+00 | 1.340E+00 | 8.770E-06 |
表9 九种算法求解悬臂梁设计问题的对比
Tab.9 Comparison of 9 algorithms for cantilever beam design problem
算法 | Best | Worst | Mean | Std |
---|---|---|---|---|
GSA | 3.3615E+00 | 9.9425E+00 | 6.946E+00 | 1.790E+00 |
PSO | 1.3400E+00 | 1.3400E+00 | 1.340E+00 | 9.763E-06 |
BBO | 1.3400E+00 | 1.3427E+00 | 1.341E+00 | 3.993E-04 |
DE | 1.3400E+00 | 1.3401E+00 | 1.340E+00 | 1.897E-05 |
ACO | 6.9951E+10 | 6.9951E+10 | 6.995E+10 | 0.000E+00 |
SSA | 1.3400E+00 | 1.3401E+00 | 1.340E+00 | 3.446E-05 |
SCA | 1.3517E+00 | 1.4292E+00 | 1.340E+00 | 2.096E-02 |
AOA | 1.3400E+00 | 1.3401E+00 | 1.340E+00 | 6.846E-05 |
MSAOA | 1.3400E+00 | 1.3400E+00 | 1.340E+00 | 8.770E-06 |
1 | PIPERAGKAS G S, ANASTASIADIS A G, HATZIARGYRIOU N D. Stochastic PSO-based heat and power dispatch under environmental constraints incorporating CHP and wind power units[J]. Electric Power Systems Research, 2011, 81(1):209-218. 10.1016/j.epsr.2010.08.009 |
2 | BOUARROUDJ N, BOUKHETALA D, BOUDJEMA F. A hybrid fuzzy fractional order PID sliding-mode controller design using PSO algorithm for interconnected nonlinear systems[J]. Control Engineering and Applied Informatics, 2015, 17(1):41-51. |
3 | ZHANG J, SHENG J N, LU J W, et al. UCPSO: a uniform initialized particle swarm optimization algorithm with cosine inertia weight[J]. Computational Intelligence and Neuroscience, 2021, 2021: No.8819333. 10.1155/2021/8819333 |
4 | ZUO W L, WANG Z Y, LIU T, et al. Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest-neighbor approach[J]. Biomedical Signal Processing and Control, 2013, 8(4):364-373. 10.1016/j.bspc.2013.02.006 |
5 | VENTER G, SOBIESZCZANSKI-SOBIESKI J. Particle swarm optimization[J]. AIAA Journal, 2003, 41(8):1583-1589. 10.2514/2.2111 |
6 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69:46-61. 10.1016/j.advengsoft.2013.12.007 |
7 | MIRJALILI S. SCA: a Sine Cosine Algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96:120-133. 10.1016/j.knosys.2015.12.022 |
8 | FARAMARZI A, HEIDARINEJAD M, STEPHENS B, et al. Equilibrium optimizer: a novel optimization algorithm[J]. Knowledge-Based Systems, 2020, 191: No.105190. 10.1016/j.knosys.2019.105190 |
9 | XING B, GAO W J. Gravitational search algorithm[M]// Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms, ISRL 62. Cham: Springer, 2014:355-364. |
10 | SIMON D. Biogeography-based optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(6):702-713. 10.1109/tevc.2008.919004 |
11 | MAYER D G, KINGHORN B P, ARCHER A A. Differential evolution — an easy and efficient evolutionary algorithm for model optimisation[J]. Agricultural Systems, 2005, 83(3):315-328. 10.1016/j.agsy.2004.05.002 |
12 | DORIGO M, BIRATTARI M, STÜTZLE T. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4):28-39. 10.1109/ci-m.2006.248054 |
13 | MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114:163-191. 10.1016/j.advengsoft.2017.07.002 |
14 | HASHIM F A, HUSSAIN K, HOUSSEIN E H, et al. Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems[J]. Applied Intelligence, 2021, 51(3):1531-1551. 10.1007/s10489-020-01893-z |
15 | RORRES C. Completing book Ⅱ of Archimedes’s on floating bodies[J]. The Mathematical Intelligencer, 2004, 26(3):32-42. 10.1007/bf02986750 |
16 | BERTSEKAS D P. 凸优化理论[M]. 赵千川,王梦迪,译. 北京:清华大学出版社, 2015:109-111. |
BERTSEKAS D P. Convex Optimization Theory[M]. ZHAO Q C, WANG M D, translated. Beijing: Tsinghua University Press, 2015:109-111. | |
17 | SENTHILNATH J, DAS V, OMKAR S N, et al. Clustering using Levy flight cuckoo search[M]// BANSAL J, SINGH P, DEEP K, et al. Proceedings of 7th International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), AISC 202. India: Springer, 2013: 65-75. |
18 | YANG X S, TING T O, KARAMANOGLU M. Random walks, Lévy flights, Markov chains and metaheuristic optimization[M]// JUNG H K, KIM J T, SAHAMA T, et al. Future Information Communication Technology and Applications, LNEE 235. Dordrecht: Springer, 2013: 1055-1064. 10.1007/978-94-007-6516-0_116 |
19 | TANYILDIZI E, DEMIR G. Golden sine algorithm: a novel math-inspired algorithm[J]. Advances in Electrical and Computer Engineering, 2017, 17(2):71-78. 10.4316/aece.2017.02010 |
20 | 刘惟信,孟嗣宗. 机械最优化设计[M]. 北京:清华大学出版社, 1986:19-11. |
LIU W X, MENG S Z. Mechanical Optimization Design[M]. Beijing: Tsinghua University Press, 1986:19-11. | |
21 | RAGSDELL K M, PHILLIPS D T. Optimal design of a class of welded structures using geometric programming[J]. Journal of Engineering for Industry, 1976, 98(3):1021-1025. 10.1115/1.3438995 |
22 | LIU N X, PAN J S, SUN C L, et al. An efficient surrogate-assisted quasi-affine transformation evolutionary algorithm for expensive optimization problems[J]. Knowledge-Based Systems, 2020, 209: No.106418. 10.1016/j.knosys.2020.106418 |
23 | KANNAN B K, KRAMER S N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design[J]. Transactions of ASME Journal of Mechanical Design, 1994, 116(2):405-411. 10.1115/1.2919393 |
24 | GUPTA S, DEEP K. A hybrid self-adaptive sine cosine algorithm with opposition based learning[J]. Expert Systems with Applications, 2019, 119:210-230. 10.1016/j.eswa.2018.10.050 |
[1] | 欧云, 周恺卿, 尹鹏飞, 刘雪薇. 双收敛因子策略下的改进灰狼优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2679-2685. |
[2] | 高昊, 张庆科, 卜降龙, 李俊青, 张化祥. 基于协同变异与莱维飞行策略的教与学优化算法及其应用[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1355-1364. |
[3] | 邱仲睿, 苗虹, 曾成碧. 多策略融合的改进黏菌算法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 812-819. |
[4] | 赵沛雯, 张达敏, 张琳娜, 邹诚诚. 融合黄金正弦算法和纵横交叉策略的秃鹰搜索算法[J]. 《计算机应用》唯一官方网站, 2023, 43(1): 192-201. |
[5] | 雍欣, 高岳林, 赫亚华, 王惠敏. 多策略融合的改进萤火虫算法[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3847-3855. |
[6] | 贾鹤鸣, 李瑶, 姜子超, 孙康健. 基于改进共生生物搜索算法的林火图像多阈值分割[J]. 计算机应用, 2021, 41(5): 1465-1470. |
[7] | 郑延斌, 席鹏雪, 王林林, 樊文鑫, 韩梦云. 基于人工势场法的多智能体编队避障方法[J]. 计算机应用, 2018, 38(12): 3380-3384. |
[8] | 徐同伟, 何庆, 吴意乐, 顾海霞. 基于改进离散果蝇优化算法的WSN广播路由算法[J]. 计算机应用, 2017, 37(4): 965-969. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||