| 1 | SI C, CHEN W, WANG W, et al. An attention enhanced graph convolutional LSTM network for skeleton-based action recognition[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1227-1236.  10.1109/cvpr.2019.00132 | 
																													
																						| 2 | A van den OORD, KALCHBRENNER N, KAVUKCUOGLU K. Pixel recurrent neural networks[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 1747-1756. | 
																													
																						| 3 | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 3844-3852. | 
																													
																						| 4 | YANG H, YAN D, ZHANG L, et al. Feedback graph convolutional network for skeleton-based action recognition[J]. IEEE Transactions on Image Processing, 2022, 31: 164-175.  10.1109/tip.2021.3129117 | 
																													
																						| 5 | YAN S, XIONG Y, LIN D. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 7444-7452.  10.1609/aaai.v32i1.12328 | 
																													
																						| 6 | SHI L, ZHANG Y, CHENG J, et al. Decoupled spatial-temporal attention network for skeleton-based action recognition[C]// Proceedings of the 2020 Asian Conference on Computer Vision, LNCS 12626. Cham: Springer, 2021: 38-53. | 
																													
																						| 7 | CHEN Y, ZHANG Z, YUAN C, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 13339-13348.  10.1109/iccv48922.2021.01311 | 
																													
																						| 8 | LI C, CUI Z, ZHENG W, et al. Action-attending graphic neural network[J]. IEEE Transactions on Image Processing, 2018, 27(7): 3657-3670.  10.1109/tip.2018.2815744 | 
																													
																						| 9 | PENG W, HONG X, CHEN H, et al. Learning graph convolutional network for skeleton-based human action recognition by neural searching[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 2669-2676.  10.1609/aaai.v34i03.5652 | 
																													
																						| 10 | ZHAO R, WANG K, SU H, et al. Bayesian graph convolution LSTM for skeleton based action recognition[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6882-6892.  10.1109/iccv.2019.00698 | 
																													
																						| 11 | GAO J, HE T, ZHOU X, et al. Focusing and diffusion: bidirectional attentive graph convolutional networks for skeleton-based action recognition[EB/OL]. (2019-12-24). [2022-08-13]..  10.1109/lsp.2021.3116513 | 
																													
																						| 12 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22). [2022-09-10]..  10.48550/arXiv.1609.02907 | 
																													
																						| 13 | LIU Z, ZHANG H, CHEN Z, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 143-152.  10.1109/cvpr42600.2020.00022 | 
																													
																						| 14 | CHENG K, ZHANG Y, HE X, et al. Skeleton-based action recognition with shift graph convolutional network[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 180-189.  10.1109/cvpr42600.2020.00026 | 
																													
																						| 15 | SONG Y F, ZHANG Z, SHAN C, et al. Richly activated graph convolutional network for robust skeleton-based action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(5): 1915-1925.  10.1109/tcsvt.2020.3015051 | 
																													
																						| 16 | CHO S, MAQBOOL M H, LIU F, et al. Self-attention network for skeleton-based human action recognition[C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 624-633.  10.1109/wacv45572.2020.9093639 | 
																													
																						| 17 | YU W, YANG K, YAO H, et al. Exploiting the complementary strengths of multi-layer CNN features for image retrieval[J]. Neurocomputing, 2017, 237: 235-241.  10.1016/j.neucom.2016.12.002 | 
																													
																						| 18 | 刘渭滨,邹智元,邢薇薇. 模式分类中的特征融合方法[J]. 北京邮电大学学报, 2017, 40(4): 1-8. | 
																													
																						|  | LIU W B, ZOU Z Y, XING W W. Feature fusion method in pattern classification[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(4): 1-8. | 
																													
																						| 19 | SHI L, ZHANG Y, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12018-12027.  10.1109/cvpr.2019.01230 | 
																													
																						| 20 | CHEN Y, ROHRBACH M, YAN Z, et al. Graph-based global reasoning networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 433-442.  10.1109/cvpr.2019.00052 | 
																													
																						| 21 | SHAHROUDY A, LIU J, NG T T, et al. NTU RGB+ D: a large scale dataset for 3D human activity analysis[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1010-1019.  10.1109/cvpr.2016.115 | 
																													
																						| 22 | LIU J, SHAHROUDY A, PEREZ M, et al. NTU RGB+ D 120: a large-scale benchmark for 3D human activity understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2684-2701.  10.1109/tpami.2019.2916873 | 
																													
																						| 23 | PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in PyTorch[EB/OL]. (2017-10-29) [2020-12-01].. | 
																													
																						| 24 | HUANG L, HUANG Y, OUYANG W, et al. Part-level graph convolutional network for skeleton-based action recognition[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 11045-11052.  10.1609/aaai.v34i07.6759 | 
																													
																						| 25 | SHI L, ZHANG Y, CHENG J, et al. Skeleton-based action recognition with directed graph neural networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7904-7913.  10.1109/cvpr.2019.00810 | 
																													
																						| 26 | THAKKAR K, NARAYANAN P J. Part-based graph convolutional network for action recognition[EB/OL]. (2018-09-13) [2022-08-13].. | 
																													
																						| 27 | YANG H, GU Y, ZHU J, et al. PGCN-TCA: pseudo graph convolutional network with temporal and channel-wise attention for skeleton-based action recognition[J]. IEEE Access, 2020, 8: 10040-10047.  10.1109/access.2020.2964115 | 
																													
																						| 28 | PLIZZARI C, CANNICI M, MATTEUCCI M. Skeleton-based action recognition via spatial and temporal transformer networks[J]. Computer Vision and Image Understanding, 2021, 208/209: No.103219.  10.1016/j.cviu.2021.103219 | 
																													
																						| 29 | ZHANG P, LAN C, ZENG W, et al. Semantics-guided neural networks for efficient skeleton-based human action recognition[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1109-1118.  10.1109/cvpr42600.2020.00119 | 
																													
																						| 30 | CHEN Z, LIU H, GUO T, et al. Contrastive learning from spatio-temporal mixed skeleton sequences for self-supervised skeleton-based action recognition[EB/OL]. (2022-07-07) [2022-10-23].. | 
																													
																						| 31 | CHEN Z, LI S, YANG B, et al. Multi-scale spatial temporal graph convolutional network for skeleton-based action recognition[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 1113-1122.  10.1609/aaai.v35i2.16197 | 
																													
																						| 32 | PAPADOPOULOS K, GHORBEL E, AOUADA D, et al. Vertex feature encoding and hierarchical temporal modeling in a spatial-temporal graph convolutional network for action recognition[C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 452-458.  10.1109/icpr48806.2021.9413189 | 
																													
																						| 33 | MEMMESHEIMER R, THEISEN N, PAULUS D. Gimme signals: discriminative signal encoding for multimodal activity recognition[C]// Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2020: 10394-10401.  10.1109/iros45743.2020.9341699 |