《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (10): 3244-3250.DOI: 10.11772/j.issn.1001-9081.2022091457
所属专题: 多媒体计算与计算机仿真
收稿日期:
2022-10-08
修回日期:
2023-01-03
接受日期:
2023-02-01
发布日期:
2023-04-04
出版日期:
2023-10-10
通讯作者:
卢振坤
作者简介:
纪佳奇(1997—),男,江苏徐州人,硕士研究生,主要研究方向:深度学习、图像处理基金资助:
Jiaqi JI, Zhenkun LU(), Fupeng XIONG, Tian ZHANG, Hao YANG
Received:
2022-10-08
Revised:
2023-01-03
Accepted:
2023-02-01
Online:
2023-04-04
Published:
2023-10-10
Contact:
Zhenkun LU
About author:
JI Jiaqi, born in 1997, M. S. candidate. His research interests include deep learning, image processing.Supported by:
摘要:
为解决复原后的运动模糊人像图像的轮廓模糊、细节丢失等问题,提出了基于多级跳跃残差组生成对抗网络(GAN)的运动人像去模糊方法。首先,改进残差块以构造多级跳跃残差组模块,并改进PatchGAN的结构以使GAN能够更好地结合各层的图像特征;其次,使用多损失融合的方法优化网络,从而增强重建后图像的真实纹理;最后,采用端到端的模式将运动模糊的人像图像进行盲去模糊操作,并输出清晰的人像图像。在CelebA数据集上的实验结果表明,相较于DeblurGAN(Deblur GAN)、尺度循环网络(SRN)和MSRAN(Multi-Scale Recurrent Attention Network)等基于卷积神经网络(CNN)的方法,所提方法的峰值信噪比(PSNR)和结构相似度(SSIM)分别至少提高了0.46 dB和0.05;同时,所提方法的模型参数更少,修复速度更快,且复原后的人像图像具有更多的纹理细节。
中图分类号:
纪佳奇, 卢振坤, 熊福棚, 张甜, 杨豪. 基于多级跳跃残差组的运动人像去模糊网络[J]. 计算机应用, 2023, 43(10): 3244-3250.
Jiaqi JI, Zhenkun LU, Fupeng XIONG, Tian ZHANG, Hao YANG. Moving portrait debluring network based on multi-level jump residual group[J]. Journal of Computer Applications, 2023, 43(10): 3244-3250.
层 | 大小 | 卷积核大小 | Stride | 激活函数 |
---|---|---|---|---|
Conv1 | 256×256×64 | 3×3 | 1 | LeakyReLU |
Conv2 | 128×128×64 | 3×3 | 2 | LeakyReLU |
Conv3 | 128×128×128 | 3×3 | 1 | LeakyReLU |
Conv4 | 64×64×128 | 3×3 | 2 | LeakyReLU |
Conv5 | 64×64×256 | 3×3 | 1 | LeakyReLU |
Conv6 | 32×32×256 | 3×3 | 2 | LeakyReLU |
Conv7 | 32×32×512 | 3×3 | 1 | LeakyReLU |
Conv8 | 16×16×512 | 3×3 | 2 | LeakyReLU |
Dense1 | 16×16×1 024 | LeakyReLU | ||
Dense2 | 16×16×1 | Sigmoid |
表1 判别网络模型参数
Tab. 1 Model parameters of discriminative network
层 | 大小 | 卷积核大小 | Stride | 激活函数 |
---|---|---|---|---|
Conv1 | 256×256×64 | 3×3 | 1 | LeakyReLU |
Conv2 | 128×128×64 | 3×3 | 2 | LeakyReLU |
Conv3 | 128×128×128 | 3×3 | 1 | LeakyReLU |
Conv4 | 64×64×128 | 3×3 | 2 | LeakyReLU |
Conv5 | 64×64×256 | 3×3 | 1 | LeakyReLU |
Conv6 | 32×32×256 | 3×3 | 2 | LeakyReLU |
Conv7 | 32×32×512 | 3×3 | 1 | LeakyReLU |
Conv8 | 16×16×512 | 3×3 | 2 | LeakyReLU |
Dense1 | 16×16×1 024 | LeakyReLU | ||
Dense2 | 16×16×1 | Sigmoid |
卷积层 | PSNR/dB | SSIM | 卷积层 | PSNR/dB | SSIM |
---|---|---|---|---|---|
28.02 | 0.92 | 29.21 | 0.94 | ||
28.24 | 0.91 | 27.79 | 0.90 |
表2 VGG19不同卷积层的去模糊效果对比
Tab. 2 Comparison of deblurring effects of different convolutional layers in VGG19
卷积层 | PSNR/dB | SSIM | 卷积层 | PSNR/dB | SSIM |
---|---|---|---|---|---|
28.02 | 0.92 | 29.21 | 0.94 | ||
28.24 | 0.91 | 27.79 | 0.90 |
损失函数 | PSNR/dB | SSIM |
---|---|---|
Ladv | 28.16 | 0.91 |
LP | 28.03 | 0.91 |
Ladv+LP | 29.21 | 0.94 |
表3 不同损失函数的消融实验结果
Tab. 3 Ablation experimental results of different loss functions
损失函数 | PSNR/dB | SSIM |
---|---|---|
Ladv | 28.16 | 0.91 |
LP | 28.03 | 0.91 |
Ladv+LP | 29.21 | 0.94 |
残差块数 | PSNR/dB | SSIM |
---|---|---|
1 | 26.85 | 0.75 |
2 | 27.23 | 0.82 |
3 | 29.21 | 0.94 |
表4 不同数量的残差块性能分析
Tab. 4 Performance analysis of different numbers of residual blocks
残差块数 | PSNR/dB | SSIM |
---|---|---|
1 | 26.85 | 0.75 |
2 | 27.23 | 0.82 |
3 | 29.21 | 0.94 |
方法 | PSNR/dB | SSIM | 生成网络参数量 |
---|---|---|---|
Multiple-scale CNN | 29.12 | 0.92 | ― |
DeblurGAN | 27.90 | 0.87 | 11 399 171 |
SRN | 30.13 | 0.93 | ― |
MSRAN | 31.62 | 0.94 | ― |
DMPHN | 31.61 | 0.93 | ― |
本文方法 | 32.19 | 0.96 | 2 926 659 |
表5 不同方法去除人像高斯模糊性能的定量比较结果
Tab. 5 Quantitative comparison results of the performance of different algorithms in removing Gaussian blur in portraits
方法 | PSNR/dB | SSIM | 生成网络参数量 |
---|---|---|---|
Multiple-scale CNN | 29.12 | 0.92 | ― |
DeblurGAN | 27.90 | 0.87 | 11 399 171 |
SRN | 30.13 | 0.93 | ― |
MSRAN | 31.62 | 0.94 | ― |
DMPHN | 31.61 | 0.93 | ― |
本文方法 | 32.19 | 0.96 | 2 926 659 |
方法 | PSNR/dB | SSIM | 复原时间/s |
---|---|---|---|
Multiple-scale CNN | 26.36 | 0.84 | 1.562 |
DeblurGAN | 27.26 | 0.85 | 0.097 |
SRN | 26.79 | 0.84 | 0.831 |
MSRAN | 28.75 | 0.89 | 0.614 |
DMPHN | 27.86 | 0.87 | 0.034 |
本文方法 | 29.21 | 0.94 | 0.089 |
表6 不同方法去除人像运动模糊性能的定量比较结果
Tab. 6 Quantitative comparison results of the performance of different algorithms in removing portrait motion blur
方法 | PSNR/dB | SSIM | 复原时间/s |
---|---|---|---|
Multiple-scale CNN | 26.36 | 0.84 | 1.562 |
DeblurGAN | 27.26 | 0.85 | 0.097 |
SRN | 26.79 | 0.84 | 0.831 |
MSRAN | 28.75 | 0.89 | 0.614 |
DMPHN | 27.86 | 0.87 | 0.034 |
本文方法 | 29.21 | 0.94 | 0.089 |
方法 | PSNR/dB | SSIM | 方法 | PSNR/dB | SSIM |
---|---|---|---|---|---|
Multi-scale CNN | 28.28 | 0.89 | MSRAN | 29.45 | 0.92 |
DeblurGAN | 28.25 | 0.87 | DMPHN | 30.51 | 0.92 |
SRN | 29.33 | 0.90 | 本文方法 | 30.48 | 0.94 |
表7 不同方法在GoPro数据集上的去模糊效果实验结果对比
Tab. 7 Experimental results comparison of deblurring effects by different methos on GoPro dataset
方法 | PSNR/dB | SSIM | 方法 | PSNR/dB | SSIM |
---|---|---|---|---|---|
Multi-scale CNN | 28.28 | 0.89 | MSRAN | 29.45 | 0.92 |
DeblurGAN | 28.25 | 0.87 | DMPHN | 30.51 | 0.92 |
SRN | 29.33 | 0.90 | 本文方法 | 30.48 | 0.94 |
1 | WHITE R L. Image restoration using the damped Richardson-Lucy method[C]// Proceedings of the SPIE 2198, Instrumentation in Astronomy Ⅷ. Bellingham, WA: SPIE, 1994: 1342-1348. 10.1117/12.176819 |
2 | FERGUS R, SINGH B, HERTZMANN A, et al. Removing camera shake from a single photograph[M]// ACM SIGGRAPH 2006 Papers. New York: ACM, 2006: 787-794. 10.1145/1179352.1141956 |
3 | PAN J, SUN D, PFISTER H, et al. Blind image deblurring using dark channel prior[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1628-1636. 10.1109/cvpr.2016.180 |
4 | LI L, PAN J, LAI W S, et al. Learning a discriminative prior for blind image deblurring[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6616-6625. 10.1109/cvpr.2018.00692 |
5 | LEVIN A. Blind motion deblurring using image statistics[C]// Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2006: 841-848. 10.7551/mitpress/7503.003.0110 |
6 | YUAN X, ZHU J, LI X. Blur kernel estimation by structure sparse prior[J]. Applied Sciences, 2020, 10(2): No.657. 10.3390/app10020657 |
7 | LIU S, FENG Y, ZHANG S, et al. L0 sparse regularization-based image blind deblurring approach for solid waste image restoration[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9837-9845. 10.1109/tie.2019.2892681 |
8 | XU L, REN J S J, LIU C, et al. Deep convolutional neural network for image deconvolution[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems — Volume 1. Cambridge: MIT Press, 2014: 1790-1798. |
9 | SUN J, CAO W, XU Z, et al. Learning a convolutional neural network for non-uniform motion blur removal[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 769-777. 10.1109/cvpr.2015.7298677 |
10 | GONG D, YANG J, LIU L, et al. From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3806-3815. 10.1109/cvpr.2017.405 |
11 | NAH S, KIM T H, LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 257-265. 10.1109/cvpr.2017.35 |
12 | KUPYN O, BUDZAN V, MYKHAILYCH M, et al. DeblurGAN: blind motion deblurring using conditional adversarial networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8183-8192. 10.1109/cvpr.2018.00854 |
13 | TAO X, GAO H, SHEN X, et al. Scale-recurrent network for deep image deblurring[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8174-8182. 10.1109/cvpr.2018.00853 |
14 | WU Y, HONG C, ZHANG X, et al. Stack-based scale-recurrent network for face image deblurring[J]. Neural Processing Letters, 2021, 53(6): 4419-4436. 10.1007/s11063-021-10604-9 |
15 | 陈贵强,何军,罗顺茺. 基于改进CycleGAN的视频监控人脸超分辨率恢复算法[J]. 计算机应用研究, 2021, 38(10):3172-3176. 10.19734/j.issn.1001-3695.2020.11.0434 |
CHEN G Q, HE J, LUO S C. Improved video surveillance face super-resolution recovery algorithm based on CycleGAN[J]. Application Research of Computers, 2021, 38(10):3172-3176. 10.19734/j.issn.1001-3695.2020.11.0434 | |
16 | 欧阳宁,邓超阳,林乐平. 基于自适应残差的运动图像去模糊[J]. 计算机工程与设计, 2021, 42(6):1684-1690. 10.16208/j.issn1000-7024.2021.06.024 |
OUYANG N, DENG C Y, LIN L P. Motion image deblurring based on adaptive residuals[J]. Computer Engineering and Design, 2021, 42(6): 1684-1690. 10.16208/j.issn1000-7024.2021.06.024 | |
17 | 魏海云,郑茜颖,俞金玲. 基于多尺度网络的运动模糊图像复原算法[J]. 计算机应用, 2022, 42(9): 2838-2844. 10.11772/j.issn.1001-9081.2021081433 |
WEI H Y, ZHENG Q Y, YU J L. Motion blurred image restoration algorithm based on multi-scale network[J]. Journal of Computer Applications, 2022, 42(9): 2838-2844. 10.11772/j.issn.1001-9081.2021081433 | |
18 | 刘万军,张正寰,曲海成. 融合DenseNet的多尺度图像去模糊模型[J]. 计算机工程与应用, 2021, 57(24): 219-226. |
LIU W J, ZHANG Z H, QU H C. Multi-scale image deblurring model with DenseNet[J]. Computer Engineering and Applications, 2021, 57(24):219-226. | |
19 | 王向军,欧阳文森. 多尺度循环注意力网络运动模糊图像复原方法[J]. 红外与激光工程, 2022, 51(6): No.20210605. |
WANG X J, OUYANG W S. Multi-scale recurrent attention network for image motion deblurring[J]. Infrared and Laser Engineering, 2022, 51(6): No.20210605. | |
20 | ZHANG H, DAI Y, LI H, et al. Deep stacked hierarchical multi-patch network for image deblurring[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5971-5979. 10.1109/cvpr.2019.00613 |
21 | 李福海,蒋慕蓉,杨磊,等. 基于生成对抗网络的梯度引导太阳斑点图像去模糊方法[J]. 计算机应用, 2021, 41(11):3345-3352. 10.11772/j.issn.1001-9081.2020121898 |
LI F H, JIANG M R, YANG L, et al. Solar speckle image deblurring method with gradient guidance based on generative adversarial network[J]. Journal of Computer Applications, 2021, 41(11): 3345-3352. 10.11772/j.issn.1001-9081.2020121898 | |
22 | 虞志军,王国栋,张镡月. 基于增强多尺度特征网络的图像去模糊[J]. 激光与光电子学进展, 2022, 59(22): No.2215007. 10.3788/LOP202259.2215007 |
YU Z J, WANG G D, ZHANG X Y. Image deblurring based on enhanced multi-scale feature network[J]. Laser and Optoelectronics Progress, 2022, 59(22): No.2215007. 10.3788/LOP202259.2215007 | |
23 | 王晨卿,荆涛,刘云鹏,等. 基于多尺度条件生成对抗网络的图像去模糊[J]. 计算机工程与设计, 2022, 43(4):1074-1082. |
WANG C Q, JIN T, LIU Y P, et al. Image deblurring based on multi-scale conditional generative adversarial network[J]. Computer Engineering and Design, 2022, 43(4):1074-1082. | |
24 | 魏丙财,张立晔,孟晓亮,等. 基于深度残差生成对抗网络的运动图像去模糊[J]. 液晶与显示, 2021, 36(12): 1693-1701. 10.37188/cjlcd.2021-0120 |
WEI B C, ZHANG L Y, MENG X L, et al. Motion image deblurring based on depth residual generative adversarial network[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(12): 1693-1701. 10.37188/cjlcd.2021-0120 | |
25 | LI C, WAND M. Precomputed real-time texture synthesis with Markovian generative adversarial networks[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9907. Cham: Springer, 2016: 702-716. |
26 | SCHULER C J, HIRSCH M, HARMELING S, et al. Learning to deblur[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(7): 1439-1451. 10.1109/tpami.2015.2481418 |
27 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2014: 2672-2680. |
28 | LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. 10.1109/cvpr.2017.19 |
29 | WANG X, YU K, WU S, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11133. Cham: Springer, 2019: 63-79. |
30 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
31 | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]// Proceedings of the 2016 European Conference on Computer Vision. Berlin: Springer, 2016: 694-711. 10.1007/978-3-319-46475-6_43 |
32 | ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5967-5976. 10.1109/cvpr.2017.632 |
33 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. 10.1109/cvpr.2009.5206848 |
34 | LIU Z, LUO P, WANG X, et al. Large-scale CelebFaces attributes (CelebA) dataset[DS/OL]. [2022-06-14].. |
35 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2022-06-14].. |
[1] | 刘丽, 侯海金, 王安红, 张涛. 基于多尺度注意力的生成式信息隐藏算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2102-2109. |
[2] | 王昊冉, 于丹, 杨玉丽, 马垚, 陈永乐. 面向工控系统未知攻击的域迁移入侵检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1158-1165. |
[3] | 郑毅, 廖存燚, 张天倩, 王骥, 刘守印. 面向城区的基于图去噪的小区级RSRP估计方法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 855-862. |
[4] | 周辉, 陈玉玲, 王学伟, 张洋文, 何建江. 基于生成对抗网络的联邦学习深度影子防御方案[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 223-232. |
[5] | 刘安阳, 赵怀慈, 蔡文龙, 许泽超, 解瑞灯. 基于主动判别机制的自适应生成对抗网络图像去模糊算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2288-2294. |
[6] | 陈少权, 蔡剑平, 孙岚. 动态梯度阈值裁剪的差分隐私生成对抗网络算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2065-2072. |
[7] | 靳鑫, 刘仰川, 朱叶晨, 张子健, 高欣. 基于残差编解码-生成对抗网络的正弦图修复的稀疏角度锥束CT图像重建[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1950-1957. |
[8] | 郭劲文, 马兴华, 骆功宁, 王玮, 曹阳, 王宽全. 基于Transformer的结构强化IVOCT导丝伪影去除方法[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1596-1605. |
[9] | 吴家皋, 章仕稳, 蒋宇栋, 刘林峰. 基于状态精细化长短期记忆和注意力机制的社交生成对抗网络用于行人轨迹预测[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1565-1570. |
[10] | 樊小宇, 蔺素珍, 王彦博, 刘峰, 李大威. 基于残差图卷积神经网络的高倍欠采样核磁共振图像重建算法[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1261-1268. |
[11] | 王昊, 王子成, 张超, 马韵升. 基于生成对抗网络的数据不确定性量化方法[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1094-1101. |
[12] | 尹春勇, 周立文. 基于再编码的无监督时间序列异常检测模型[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 804-811. |
[13] | 陶玲玲, 刘波, 李文博, 何希平. 有闭解的可控人脸编辑算法[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 601-607. |
[14] | 王若莹, 吕凡, 赵柳清, 胡伏原. 融合用户需求和边界约束的平面图生成算法[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 575-582. |
[15] | 陈刚, 廖永为, 杨振国, 刘文印. 基于多特征融合的多尺度生成对抗网络图像修复算法[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 536-544. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||