1 |
XU K, REDDY S, FENG Y, et al. Question answering on freebase via relation extraction and textual evidence [C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 2326-2336.
|
2 |
DISTIAWAN B, WEIKUM G, QI J, et al. Neural relation extraction for knowledge base enrichment [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 229-240.
|
3 |
SUN K, ZHANG R, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5679-5688.
|
4 |
MA Y, HIRAOKA T, OKAZAKI N. Joint entity and relation extraction based on table labeling using convolutional neural networks [C]// Proceedings of the 6th Workshop on Structured Prediction for NLP. Stroudsburg: ACL, 2022: 11-21.
|
5 |
ZENG D, LIU K, CHEN Y, et al. Distant supervision for relation extraction via piecewise convolutional neural networks [C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1753-1762.
|
6 |
李子茂,张玥,尹帆,等.基于自注意力与分段卷积神经网络的实体关系抽取[J].中南民族大学学报(自然科学版), 2022, 41(3): 326-332.
|
|
LI Z M, ZHANG Y, YIN F, et al. Entity relation extraction based on self-attention and piecewise convolutional neural network [J]. Journal of South-Central Minzu University(Natural Science Edition), 2022, 41(3): 326-332.
|
7 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31 st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010.
|
8 |
MNIH V, HEESS N, GRAVES A. Recurrent models of visual attention [C]// Proceedings of the 27th International Conference on Neural Information Processing Systems: Volume 2. Cambridge: MIT Press, 2014: 2204-2212.
|
9 |
RINK B, HARABAGIU S. UTD: classifying semantic relations by combining lexical and semantic resources [C]// Proceedings of the 5th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2010: 256-259.
|
10 |
YANG Y, TONG Y, MA S, et al. A position encoding convolutional neural network based on dependency tree for relation classification [C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL 2016: 65-74.
|
11 |
QUAN C, HUA L, SUN X, et al. Multichannel convolutional neural network for biological relation extraction [J]. BioMed Research International, 2016, 2016: No.1850404.
|
12 |
CHEN Y, WANG K, YANG W, et al. A multi-channel deep neural network for relation extraction [J]. IEEE Access, 2020, 8: 13195-13203.
|
13 |
LEE J, SEO S, CHOI Y S. Semantic relation classification via bidirectional LSTM networks with entity-aware attention using latent entity typing [J]. Symmetry, 2019, 11(6): No.785.
|
14 |
闫雄,段跃兴,张泽华.采用自注意力机制CNN融合的实体关系抽取[J].计算机工程与科学, 2020, 42(11): 2059-2066.
|
|
YAN X, DUAN Y X, ZHANG Z H. Entity relationship extraction fusing self-attention mechanism and CNN [J]. Computer Engineering and Science, 2020, 42(11): 2059-2066.
|
15 |
SHEN Y, HUANG X. Attention-based convolutional neural network for semantic relation extraction [C]// Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. [S.l.]: The COLING 2016 Organizing Committee, 2016: 2526-2536.
|
16 |
TIAN Y, CHEN G, SONG Y, et al. Dependency-driven relation extraction with attentive graph convolutional networks [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 4458-4471.
|
17 |
隗昊,唐焕玲,周爱,等.基于双路分段注意力神经张量网络的临床文本关系抽取[J].电子学报, 2023, 51(3): 658-665.
|
|
WEI H, TANG H L, ZHOU A, et al. Clinical relation via dual piecewise attention neural tensor network [J]. Acta Electronica Sinica, 2023, 51(3): 658-665.
|
18 |
ZHOU L, WANG T, QU H, et al. A weighted GCN with logical adjacency matrix for relation extraction [C]// Proceedings of the 24th European Conference on Artificial Intelligence. Amsterdam: IOS Press, 2020: 2314-2321.
|
19 |
HENDRICKX I, KIM S N, KOZAREVA Z, et al. SemEval-2010 Task 8: multi-way classification of semantic relations between pairs of nominals[C]// Proceedings of the 5th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2010:28-33-38.
|
20 |
ZHANG Y, ZHONG V, CHEN D, et al. Position-aware attention and supervised data improve slot filling [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 35-45.
|
21 |
STOICA G, PLATANIOS E A, PÓCZOS B. Re-tacred: addressing shortcomings of the tacred dataset [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2021: 13843-13850.
|
22 |
LUAN Y, HE L, OSTENDORF M, et al. Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3219-3232.
|
23 |
ZHANG Y, QI P, MANNING C D. Graph convolution over pruned dependency trees improves relation extraction [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2205-2215.
|
24 |
LI B, YU D, YE W, et al. Sequence generation with label augmentation for relation extraction [C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2023: 13043-13050.
|
25 |
WU S, HE Y. Enriching pre-trained language model with entity information for relation classification [C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 2361-2364.
|
26 |
TIAN Y, SONG Y, XIA F. Improving relation extraction through syntax-induced pre-training with dependency masking [C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 1875-1886.
|
27 |
JOSHI M, CHEN D, LIU Y, et al. SpanBERT: improving pre-training by representing and predicting spans [J]. Transactions of the Association for Computational Linguistics, 2020, 8: 64-77.
|
28 |
HUGUET CABOT P L, NAVIGLI R. REBEL: relation extraction by end-to-end language generation [C]// Findings of the Association for Computational Linguistics. Stroudsburg: ACL, 2021: 2370-2381.
|
29 |
LI J, FEI H, LIU J, et al. Unified named entity recognition as word-word relation classification [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2022: 10965-10973.
|