| 1 | GONG Y C, LAZEBNIK S, GORDO A, et al. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2916-2929.  10.1109/tpami.2012.193 | 
																													
																						| 2 | RASIWASIA N, COSTA PEREIRA J, COVIELLO E, et al. A new approach to cross-modal multimedia retrieval[C]// Proceedings of the 18th ACM International Conference on Multimedia. New York: ACM, 2010: 251-260.  10.1145/1873951.1873987 | 
																													
																						| 3 | 冯霞,胡志毅,刘才华. 跨模态检索研究进展综述[J]. 计算机科学, 2021, 48(8): 13-23.  10.11896/jsjkx.200800165 | 
																													
																						|  | FENG X, HU Z Y, LIU C H. Survey of research progress on cross-modal retrieval[J]. Computer Science, 2021, 48(8): 13-23.  10.11896/jsjkx.200800165 | 
																													
																						| 4 | WANG Y X, CHEN Z D, LUO X, et al. Fast cross-modal hashing with global and local similarity embedding[J]. IEEE Transactions on Cybernetics, 2022, 52(10):10064-10077.  10.1109/tcyb.2021.3059886 | 
																													
																						| 5 | 梁美玉,王笑笑,杜军平. 基于多模态图和对抗哈希注意力网络的跨媒体细粒度表示学习[J]. 模式识别与人工智能, 2022, 35(3):195-206.  10.16451/j.cnki.issn1003-6059.202203001 | 
																													
																						|  | LIANG M Y, WANG X X, DU J P. Cross-media fine-grained representation learning based on multi-modal graph and adversarial hash attention network[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(3):195-206.  10.16451/j.cnki.issn1003-6059.202203001 | 
																													
																						| 6 | IRIE G, ARAI H, TANIGUCHI Y. Alternating co-quantization for cross-modal hashing[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1886-1894.  10.1109/iccv.2015.219 | 
																													
																						| 7 | ZHANG D Q, LI W J. Large-scale supervised multimodal hashing with semantic correlation maximization[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2014: 2177-2183.  10.1609/aaai.v28i1.8995 | 
																													
																						| 8 | 刘芳名,张鸿. 基于多级语义的判别式跨模态哈希检索算法[J]. 计算机应用, 2021, 41(8): 2187-2192.  10.11772/j.issn.1001-9081.2020101607 | 
																													
																						|  | LIU F M, ZHANG H. Cross-modal retrieval algorithm based on multi-level semantic discriminative guided hashing[J]. Journal of Computer Applications, 2021, 41(8): 2187-2192.  10.11772/j.issn.1001-9081.2020101607 | 
																													
																						| 9 | YU J, WU X J, KITTLER J. Discriminative supervised hashing for cross-modal similarity search[J]. Image and Vision Computing, 2019, 89: 50-56.  10.1016/j.imavis.2019.06.004 | 
																													
																						| 10 | LIU X, HU Z K, LING H B, et al. MTFH: a matrix tri-factorization hashing framework for efficient cross-modal retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(3): 964-981.  10.1109/TPAMI.2019.2940446 | 
																													
																						| 11 | 张成,万源,强浩鹏. 基于知识蒸馏的深度无监督离散跨模态哈希[J]. 计算机应用, 2021, 41(9): 2523-2531.  10.11772/j.issn.1001-9081.2020111785 | 
																													
																						|  | ZHANG C, WAN Y, QIANG H P. Deep unsupervised discrete cross-modal hashing based on knowledge distillation[J]. Journal of Computer Applications, 2021, 41(9): 2523-2531.  10.11772/j.issn.1001-9081.2020111785 | 
																													
																						| 12 | LIU H, JI R R, WU Y J, et al. Cross-modality binary code learning via fusion similarity hashing[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6345-6353.  10.1109/cvpr.2017.672 | 
																													
																						| 13 | ZHOU J L, DING G G, GUO Y C. Latent semantic sparse hashing for cross-modal similarity search[C]// Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2014: 415-424.  10.1145/2600428.2609610 | 
																													
																						| 14 | HU H T, XIE L X, HONG R C, et al. Creating something from nothing: unsupervised knowledge distillation for cross-modal hashing[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3120-3129.  10.1109/cvpr42600.2020.00319 | 
																													
																						| 15 | GUO J, ZHU W W. Collective affinity learning for partial cross-modal hashing[J]. IEEE Transactions on Image Processing, 2020, 29: 1344-1355.  10.1109/tip.2019.2941858 | 
																													
																						| 16 | MANDAL D, CHAUDHURY K N, BISWAS S. Generalized semantic preserving hashing for cross-modal retrieval[J]. IEEE Transactions on Image Processing, 2019, 28(1): 102-112.  10.1109/tip.2018.2863040 | 
																													
																						| 17 | LIN Z J, DING G G, HU M Q, et al. Semantics-preserving hashing for cross-view retrieval[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3864-3872.  10.1109/cvpr.2015.7299011 | 
																													
																						| 18 | TANG J, WANG K, SHAO L. Supervised matrix factorization hashing for cross-modal retrieval[J]. IEEE Transactions on Image Processing, 2016, 25(7): 3157-3166.  10.1109/tip.2016.2564638 | 
																													
																						| 19 | LIU X, CHEUNG Y M, HU Z K, et al. Adversarial tri-fusion hashing network for imbalanced cross-modal retrieval[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 5(4): 607-619.  10.1109/tetci.2020.3007143 | 
																													
																						| 20 | XU X, SHEN F M, YANG Y, et al. Learning discriminative binary codes for large-scale cross-modal retrieval[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2494-2507.  10.1109/tip.2017.2676345 | 
																													
																						| 21 | DING G G, GUO Y C, ZHOU J L. Collective matrix factorization hashing for multimodal data[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 2083-2090.  10.1109/cvpr.2014.267 | 
																													
																						| 22 | LIU X B, NIE X S, ZHOU Q, et al. Model optimization boosting framework for linear model hash learning[J]. IEEE Transactions on Image Processing, 2020, 29: 4254-4268.  10.1109/tip.2020.2970577 | 
																													
																						| 23 | CAO Y, QI H, ZHOU W R, et al. Binary hashing for approximate nearest neighbor search on big data: a survey[J]. IEEE Access, 2018, 6: 2039-2054.  10.1109/access.2017.2781360 | 
																													
																						| 24 | LIN M B, JI R R, LIU H, et al. Supervised online hashing via Hadamard codebook learning[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 1635-1643.  10.1145/3240508.3240519 | 
																													
																						| 25 | YUAN L, WANG T, ZHANG X P, et al. Central similarity quantization for efficient image and video retrieval[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3080-3089.  10.1109/cvpr42600.2020.00315 | 
																													
																						| 26 | BIAN X M, LAN R S, WANG X Q, et al. Discriminative codebook hashing for supervised video retrieval[J]. Computational Intelligence and Neuroscience, 2021, 2021: No.5845094.  10.1155/2021/5845094 | 
																													
																						| 27 | CHEN C, WANG X Q, CHEN X, et al. Discriminative similarity-balanced online hashing for supervised image retrieval[J]. Scientific Programming, 2022, 2022: No.2809222.  10.1155/2022/2809222 | 
																													
																						| 28 | LI C X, CHEN Z D, ZHANG P F, et al. SCRATCH: a scalable discrete matrix factorization hashing for cross-modal retrieval[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 1-9.  10.1145/3240508.3240547 | 
																													
																						| 29 | WANG D, WANG Q, HE L H, et al. Joint and individual matrix factorization hashing for large-scale cross-modal retrieval[J]. Pattern Recognition, 2020, 107: No.107479.  10.1016/j.patcog.2020.107479 | 
																													
																						| 30 | DATAR M, IMMORLICA N, INDYK P, et al. Locality-sensitive hashing scheme based on p-stable distributions[C]// Proceedings of the 12th Annual Symposium on Computational Geometry. New York: ACM, 2004: 253-262.  10.1145/997817.997857 | 
																													
																						| 31 | ZHANG D Q, LI W J. Large-scale supervised multimodal hashing with semantic correlation maximization[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2014: 2177-2183.  10.1609/aaai.v28i1.8995 | 
																													
																						| 32 | SHEN H T, LIU L C, YANG Y, et al. Exploiting subspace relation in semantic labels for cross-modal hashing[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(10): 3351-3365.  10.1109/tkde.2020.2970050 |