《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (12): 3671-3678.DOI: 10.11772/j.issn.1001-9081.2021101782
所属专题: 人工智能
收稿日期:
2021-10-18
修回日期:
2021-12-19
接受日期:
2021-12-23
发布日期:
2021-12-31
出版日期:
2022-12-10
通讯作者:
朱明
作者简介:
周寅莹(1998—),女,湖北随州人,硕士研究生,主要研究方向:知识图谱、推荐系统基金资助:
Yinying ZHOU1, Mengyi ZHANG1, Dunhui YU1,2, Ming ZHU1()
Received:
2021-10-18
Revised:
2021-12-19
Accepted:
2021-12-23
Online:
2021-12-31
Published:
2022-12-10
Contact:
Ming ZHU
About author:
ZHOU Yinyingborn in 1998, M. S. candidate. Her research interests include knowledge graph, recommendation system.Supported by:
摘要:
针对现有的社会化推荐算法大都忽略了物品间的关联关系对推荐精度的影响,并且未能将用户评分与信任数据进行有效结合的问题,提出一种融合信任隐含相似度与评分相似度的社会化推荐算法(SocialTS)。首先,将用户间的评分相似度与信任隐含相似度进行线性组合以得到用户间可靠的相似朋友;然后,将信任关系融入到项目的相关性分析中,从而得到修正后的相似项目;最后,将相似用户、项目作为正则项添加到矩阵分解(MF)模型下,从而获取用户、项目更准确的特征表示。实验结果表明,当潜在特征维度为10时,与主流的社会化推荐算法TrustSVD相比,SocialTS在FilmTrust和CiaoDVD数据集上的均方根误差(RMSE)分别降低了4.23%和8.38%,平均绝对误差(MAE)分别降低了4.66%和6.88%。SocialTS不仅可以有效改善用户冷启动问题,还能较为准确地预测不同评分数量下用户的实际评分,且具有良好的鲁棒性。
中图分类号:
周寅莹, 章梦怡, 余敦辉, 朱明. 融合信任隐含相似度与评分相似度的社会化推荐[J]. 计算机应用, 2022, 42(12): 3671-3678.
Yinying ZHOU, Mengyi ZHANG, Dunhui YU, Ming ZHU. Social recommendation combining trust implicit similarity and score similarity[J]. Journal of Computer Applications, 2022, 42(12): 3671-3678.
数据集 | 用户数 | 项目数 | 评分数 | 信任数 | 评分范围 |
---|---|---|---|---|---|
FilmTrust | 1 508 | 2 071 | 35 497 | 1 853 | [0.5,4.0] |
CiaoDVD | 17 615 | 16 121 | 72 665 | 40 133 | [1.0,5.0] |
表1 实验数据集统计信息
Tab. 1 Experimental datasets statistics
数据集 | 用户数 | 项目数 | 评分数 | 信任数 | 评分范围 |
---|---|---|---|---|---|
FilmTrust | 1 508 | 2 071 | 35 497 | 1 853 | [0.5,4.0] |
CiaoDVD | 17 615 | 16 121 | 72 665 | 40 133 | [1.0,5.0] |
算法 | FilmTrust | CiaoDVD | ||||||
---|---|---|---|---|---|---|---|---|
k=5 | k=10 | k=5 | k=10 | |||||
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |
误差降低百分比/% | 4.14 | 4.44 | 4.23 | 4.66 | 8.71 | 7.32 | 8.38 | 6.88 |
SoRec | 0.857 | 0.659 | 0.859 | 0.662 | 1.236 | 0.939 | 1.207 | 0.916 |
RSTE | 0.860 | 0.668 | 0.859 | 0.662 | 1.162 | 0.914 | 1.150 | 0.908 |
SocialMF | 0.851 | 0.659 | 0.853 | 0.661 | 1.073 | 0.833 | 1.070 | 0.822 |
SocialReg | 0.846 | 0.654 | 0.846 | 0.653 | 1.070 | 0.821 | 1.064 | 0.818 |
CUNE | 0.854 | 0.676 | 0.853 | 0.675 | 1.074 | 0.839 | 1.072 | 0.826 |
TrustSVD | 0.831 | 0.640 | 0.829 | 0.639 | 1.020 | 0.762 | 1.016 | 0.758 |
SocialTS | 0.796 | 0.612 | 0.794 | 0.609 | 0.931 | 0.706 | 0.930 | 0.706 |
表2 不同算法的实验结果对比
Tab. 2 Experimental results comparison of different algorithms
算法 | FilmTrust | CiaoDVD | ||||||
---|---|---|---|---|---|---|---|---|
k=5 | k=10 | k=5 | k=10 | |||||
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |
误差降低百分比/% | 4.14 | 4.44 | 4.23 | 4.66 | 8.71 | 7.32 | 8.38 | 6.88 |
SoRec | 0.857 | 0.659 | 0.859 | 0.662 | 1.236 | 0.939 | 1.207 | 0.916 |
RSTE | 0.860 | 0.668 | 0.859 | 0.662 | 1.162 | 0.914 | 1.150 | 0.908 |
SocialMF | 0.851 | 0.659 | 0.853 | 0.661 | 1.073 | 0.833 | 1.070 | 0.822 |
SocialReg | 0.846 | 0.654 | 0.846 | 0.653 | 1.070 | 0.821 | 1.064 | 0.818 |
CUNE | 0.854 | 0.676 | 0.853 | 0.675 | 1.074 | 0.839 | 1.072 | 0.826 |
TrustSVD | 0.831 | 0.640 | 0.829 | 0.639 | 1.020 | 0.762 | 1.016 | 0.758 |
SocialTS | 0.796 | 0.612 | 0.794 | 0.609 | 0.931 | 0.706 | 0.930 | 0.706 |
1 | DAS J, BANERJEE M, MALI K, et al. Scalable recommendations using clustering based collaborative filtering[C]// Proceedings of the 2019 International Conference on Information Technology. Piscataway: IEEE, 2019: 279-284. 10.1109/icit48102.2019.00056 |
2 | FENG J M, XIA Z Q, FENG X Y, et al. RBPR: a hybrid model for the new user cold start problem in recommender systems[J]. Knowledge-Based Systems, 2021, 214: No.106732. 10.1016/j.knosys.2020.106732 |
3 | 陈婷,朱青,周梦溪,等. 社交网络环境下基于信任的推荐算法[J]. 软件学报, 2017, 28(3):721-731. |
CHEN T, ZHU Q, ZHOU M X, et al. Trust-based recommendation algorithm in social network[J]. Journal of Software, 2017, 28(3): 721-731. | |
4 | 孟祥武,刘树栋,张玉洁,等. 社会化推荐系统研究[J]. 软件学报, 2015, 26(6):1356-1372. 10.13328/j.cnki.jos.004831 |
MENG X W, LIU S D, ZHANG Y J, et al. Research on social recommender systems[J]. Journal of Software, 2015, 26(6): 1356-1372. 10.13328/j.cnki.jos.004831 | |
5 | 刘华锋,景丽萍,于剑. 融合社交信息的矩阵分解推荐方法研究综述[J]. 软件学报, 2018, 29(2):340-362. 10.13328/j.cnki.jos.005391 |
LIU H F, JING L P, YU J. Survey of matrix factorization based recommendation methods by integrating social information[J]. Journal of Software, 2018, 29(2): 340-362. 10.13328/j.cnki.jos.005391 | |
6 | ZHANG T W, LI W P, WANG L, et al. Social recommendation algorithm based on stochastic gradient matrix decomposition in social network[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(2): 601-608. 10.1007/s12652-018-1167-7 |
7 | LIU G S, MENG K, DING J C, et al. An entity-association-based matrix factorization recommendation algorithm[J]. Computers, Materials and Continua, 2019, 58(1): 101-120. 10.32604/cmc.2019.03898 |
8 | LI W T, GAO M, RONG W G, et al. Social recommendation using Euclidean embedding[C]// Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway: IEEE, 2017: 589-595. 10.1109/ijcnn.2017.7965906 |
9 | JAMALI M, ESTER M. A matrix factorization technique with trust propagation for recommendation in social networks[C]// Proceedings of the 4th ACM Conference on Recommender Systems. New York: ACM, 2010: 135-142. 10.1145/1864708.1864736 |
10 | MA H, ZHOU D Y, LIU C, et al. Recommender systems with social regularization[C]// Proceedings of the 4th ACM International Conference on Web Search and Data Mining. New York: ACM, 2011: 287-296. 10.1145/1935826.1935877 |
11 | 潘一腾,何发智,于海平. 一种基于信任关系隐含相似度的社会化推荐算法[J]. 计算机学报, 2018, 41(1):65-81. 10.11897/SP.J.1016.2018.00065 |
PAN Y T, HE F Z, YU H P. Social recommendation algorithm using implicit similarity in trust[J]. Chinese Journal of Computers, 2018, 41(1): 65-81. 10.11897/SP.J.1016.2018.00065 | |
12 | ZHANG C X, YU L, WANG Y, et al. Collaborative user network embedding for social recommender systems[C]// Proceedings of the 2017 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2017: 381-389. 10.1137/1.9781611974973.43 |
13 | XU C T, HAN K, GUI F, et al. SimilarMF: a social recommender system using an embedding method[C]// Proceedings of the IEEE 21st International Conference on High Performance Computing and Communications/ IEEE 17th International Conference on Smart City/ IEEE 5th International Conference on Data Science and Systems. Piscataway: IEEE, 2019: 1328-1334. 10.1109/hpcc/smartcity/dss.2019.00185 |
14 | 张青博,王斌,崔宁宁,等. 基于注意力机制的规范化矩阵分解推荐算法[J]. 软件学报, 2020, 31(3):778-793. 10.13328/j.cnki.jos.005913 |
ZHANG Q B, WANG B, CUI N N, et al. Attention-based regularized matrix factorization for recommendation[J]. Journal of Software, 2020, 31(3): 778-793. 10.13328/j.cnki.jos.005913 | |
15 | MA H, YANG H X, LYU M R, et al. SoRec: social recommendation using probabilistic matrix factorization[C]// Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York: ACM, 2008: 931-940. 10.1145/1458082.1458205 |
16 | GUO G B, ZHANG J, YORKE-SMITH N. TrustSVD: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 123-129. 10.1609/aaai.v29i1.9153 |
17 | XIONG F, SHEN W H, CHEN H S, et al. Exploiting implicit influence from information propagation for social recommendation[J]. IEEE Transactions on Cybernetics, 2020, 50(10): 4186-4199. 10.1109/tcyb.2019.2939390 |
18 | 郎亚坤,王国中. 融入用户隐式信任的协同过滤推荐算法[J]. 小型微型计算机系统, 2021, 42(8):1649-1654. 10.3969/j.issn.1000-1220.2021.08.013 |
LANG Y K, WANG G Z. Collaborative filtering recommendation algorithm incorporating user implicit trust[J]. Journal of Chinese Computer Systems, 2021, 42(8): 1649-1654. 10.3969/j.issn.1000-1220.2021.08.013 | |
19 | MA H, KING I, LYU M R. Learning to recommend with social trust ensemble[C]// Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2009: 203-210. 10.1145/1571941.1571978 |
20 | SHI C, HU B B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2): 357-370. 10.1109/tkde.2018.2833443 |
21 | 田保军,杨浒昀,房建东. 融合信任和基于概率矩阵分解的推荐算法[J]. 计算机应用, 2019, 39(10):2834-2840. |
TIAN B J, YANG H Y, FANG J D. Recommendation algorithm based on probability matrix factorization and fusing trust[J]. Journal of Computer Applications, 2019, 39(10): 2834-2840. | |
22 | YANG B, LEI Y, LIU J M, et al. Social collaborative filtering by trust[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1633-1647. 10.1109/tpami.2016.2605085 |
23 | YAO W L, HE J, HUANG G Y, et al. Modeling dual role preferences for trust-aware recommendation[C]// Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2014: 975-978. 10.1145/2600428.2609488 |
24 | WANG M L, MA J. A novel recommendation approach based on users' weighted trust relations and the rating similarities[J]. Soft Computing, 2016, 20(10): 3981-3990. 10.1007/s00500-015-1734-1 |
25 | ANWAR T, UMA V, SRIVASTAVA G. Rec-CFSVD++: implementing recommendation system using collaborative filtering and singular value decomposition (SVD)++[J]. International Journal of Information Technology and Decision Making, 2021, 20(4): 1075-1093. 10.1142/s0219622021500310 |
26 | WANG D W, YIH Y, VENTRESCA M. Improving neighbor-based collaborative filtering by using a hybrid similarity measurement[J]. Expert Systems with Applications, 2020, 160: No.113651. 10.1016/j.eswa.2020.113651 |
27 | REAFEE W, ALHAZMI M, SALIM N. Two-sided regularization model based on probabilistic matrix factorization and quantum similarity for recommender systems[J]. International Journal of Modeling Simulation and Scientific Computing, 2020, 11(6): No.2050056. 10.1142/s1793962320500567 |
28 | 吴宾,娄铮铮,叶阳东. 联合正则化的矩阵分解推荐算法[J]. 软件学报, 2018, 29(9):2681-2696. |
WU B, LOU Z Z, YE Y D. Co-regularized matrix factorization recommendation algorithm[J]. Journal of Software, 2018, 29(9): 2681-2696. | |
29 | GUO G B, ZHANG J, YORKE-SMITH N. A novel Bayesian similarity measure for recommender systems[C]// Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2013: 2619-2625. 10.1145/2507157.2507200 |
30 | GUO G B, ZHANG J, THALMANN D, et al. ETAF: an extended trust antecedents framework for trust prediction[C]// Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Piscataway: IEEE, 2014: 540-547. 10.1109/asonam.2014.6921639 |
[1] | 徐则林, 杨敏, 陈勐. 融合空间和文本信息的兴趣点类别表征模型[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2456-2461. |
[2] | 周寅莹, 周允升, 余敦辉, 孙军. 基于消极相似性的自适应社会化推荐[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2439-2447. |
[3] | 谭钰, 王小琴, 蓝如师, 刘振丙, 罗笑南. 基于判别性矩阵分解的多标签跨模态哈希检索[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1349-1354. |
[4] | 李振亮, 李波. 基于矩阵分解的卷积神经网络改进方法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 685-691. |
[5] | 任奇泽, 贾洪杰, 陈东宇. 融合局部结构学习的大规模子空间聚类算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3747-3754. |
[6] | 包永春, 张建臣, 杜守信, 张军军. 基于非负矩阵分解与稀疏表示的多标签分类算法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1375-1382. |
[7] | 王锦凯, 贾旭. 基于迁移孪生非负矩阵分解的静脉识别算法[J]. 计算机应用, 2021, 41(3): 898-903. |
[8] | 陈献, 胡丽莹, 林晓炜, 陈黎飞. 基于核非负矩阵分解的有向图聚类算法[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3447-3454. |
[9] | 杜汉, 龙显忠, 李云. 基于图学习正则判别非负矩阵分解的人脸识别[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3455-3461. |
[10] | 李华, 卢桂馥, 余沁茹. 基于干净数据的流形正则化非负矩阵分解[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3492-3498. |
[11] | 骆锦潍, 刘杜钢, 潘微科, 明仲. 基于改进的倾向得分估计的无偏推荐模型[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3508-3514. |
[12] | 任柯舟, 彭甫镕, 郭鑫, 王喆, 张晓静. 动态融合社交信息的社会化推荐[J]. 计算机应用, 2021, 41(10): 2806-2812. |
[13] | 温雯, 刘芳, 蔡瑞初, 郝志峰. 面向群组用户时序行为的动态推荐算法[J]. 计算机应用, 2021, 41(1): 60-66. |
[14] | 田保军, 刘爽, 房建东. 融合主题信息和卷积神经网络的混合推荐算法[J]. 计算机应用, 2020, 40(7): 1901-1907. |
[15] | 王锦凯, 贾旭. 基于加权正交约束非负矩阵分解的车脸识别算法[J]. 计算机应用, 2020, 40(4): 1050-1055. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||