| 1 | AGRAWAL R, SRIKANT R. Fast algorithm for mining association rules in large databases [C]// Proceedings of 20th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers Inc., 1994: 487-499. | 
																													
																						| 2 | FOURNIER-VIGER P, WU C W, ZIDA S, et al. FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning [C]// Proceedings of the 2014 International Symposium On Methodologies for Intelligent Systems, LNCS 8502. Cham: Springer, 2014: 83-92. | 
																													
																						| 3 | FOURNIER-VIGER P, ZIDA S, LIN J C W, et al. EFIM-Closed: fast and memory efficient discovery of closed high-utility itemsets [C]// Proceedings of the 2016 International Conference on Machine Learning and Data Mining in Pattern Recognition, LNCS 9729. Cham: Springer, 2016: 199-213. | 
																													
																						| 4 | FOURNIER-VIGER P. FHN: efficient mining of high-utility itemsets with negative unit profits [C]// Proceedings of the 2014 International Conference on Advanced Data Mining and Applications, LNCS 8933. Cham: Springer, 2014: 16-29. | 
																													
																						| 5 | 吴倩, 王林平, 罗相洲, 等. 一种快速挖掘top-k高效用模式的算法[J]. 计算机应用研究, 2017, 34 (11): 3303-3307.  10.3969/j.issn.1001-3695.2017.11.023 | 
																													
																						|  | WU Q, WANG L P, LUO X Z, et al. Algorithm for fast discovery of top-k high utility patterns[J]. Application Research of Computers, 2017, 34 (11): 3303-3307.  10.3969/j.issn.1001-3695.2017.11.023 | 
																													
																						| 6 | 唐辉军, 王乐, 樊成立. 基于模式增长的高效用序列模式挖掘算法[J]. 自动化学报, 2021, 47 (4): 943-954. | 
																													
																						|  | TANG H J, WANG L, PAN C L. A new algorithm for mining high utility sequential patterns based on pattern-growth[J]. Acta Automatica Sinica, 2021, 47 (4): 943-954. | 
																													
																						| 7 | YEN S J, LEE Y S. Mining high utility quantitative association rules [C]// Proceedings of the 2007 International Conference on Data Warehousing and Knowledge Discovery, LNCS 4654. Berlin: Springer, 2007: 283-292. | 
																													
																						| 8 | LI C H, WU C W, TSENG V S. Efficient vertical mining of high utility quantitative itemsets [C]// Proceedings of the 2014 IEEE International Conference on Granular Computing. Piscataway: IEEE, 2014: 155-160.  10.1109/grc.2014.6982826 | 
																													
																						| 9 | LI C H, WU C W, HUANG J T, et al. An efficient algorithm for mining high utility quantitative itemsets [C]// Proceedings of the 2019 International Conference on Data Mining Workshops. Piscataway: IEEE, 2019: 1005-1012.  10.1109/icdmw.2019.00145 | 
																													
																						| 10 | NOUIOUA M, FOURNIER-VIGER P, WU C W, et al. FHUQI-Miner: fast high utility quantitative itemset mining[J]. Applied Intelligence, 2021, 51 (10): 6785-6809.  10.1007/s10489-021-02204-w | 
																													
																						| 11 | TUNG N T, NGUYEN L T T, NGUYEN T D D, et al. Efficient mining of cross-level high-utility itemsets in taxonomy quantitative databases[J]. Information Sciences, 2022, 587: 41-62.  10.1016/j.ins.2021.12.017 | 
																													
																						| 12 | CHEN L L, GAN W S, LIN Q, et al. OHUQI: mining on-shelf high-utility quantitative itemsets[J]. The Journal of Supercomputing, 2022, 78 (6): 8321-8345.  10.1007/s11227-021-04218-0 | 
																													
																						| 13 | 单芝慧, 韩萌, 韩强. 动态数据上的高效用模式挖掘综述[J]. 计算机应用, 2022, 42 (1): 94-108.  10.11772/j.issn.1001-9081.2021071290 | 
																													
																						|  | SHAN Z H, HAN M, HAN Q. Survey of high utility pattern mining on dynamic data[J]. Journal of Computer Application, 2022, 42 (1): 94-108.  10.11772/j.issn.1001-9081.2021071290 | 
																													
																						| 14 | YUN U, NAM H, LEE G, et al. Efficient approach for incremental high utility pattern mining with indexed list structure[J]. Future Generation Computer Systems, 2019, 95: 221-239.  10.1016/j.future.2018.12.029 | 
																													
																						| 15 | TSAI P S M. Mining high utility itemsets in data streams based on the weighted sliding window model[J]. International Journal of Data Mining and Knowledge Management Process, 2014, 4 (2): 13-28.  10.5121/ijdkp.2014.4202 | 
																													
																						| 16 | DAM T L, RAMAMPIARO H, NØRVÅG K, et al. Towards efficiently mining closed high utility itemsets from incremental databases[J]. Knowledge-Based Systems, 2019, 165: 13-29.  10.1016/j.knosys.2018.11.019 | 
																													
																						| 17 | NOUIOUA M, FOURNIER-VIGER P, QU J F, et al. CHUQI-Miner: mining correlated quantitative high utility itemsets [C]// Proceedings of the 2021 International Conference on Data Mining Workshops. Piscataway: IEEE, 2021: 599-606.  10.1109/icdmw53433.2021.00079 | 
																													
																						| 18 | TSENG V S, WU C W, FOURNIER-VIGER P, et al. Efficient algorithms for mining the concise and lossless representation of high utility itemsets[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27 (3): 726-739.  10.1109/tkde.2014.2345377 | 
																													
																						| 19 | DAM T L, LI K L, FOURNIER-VIGER P, et al. CLS-Miner: efficient and effective closed high-utility itemset mining[J]. Frontiers of Computer Science, 2019, 13 (2): 357-381.  10.1007/s11704-016-6245-4 | 
																													
																						| 20 | NGUYEN L T T, VU V V, LAM M T H, et al. An efficient method for mining high utility closed itemsets[J]. Information Sciences, 2019, 495: 78-99.  10.1016/j.ins.2019.05.006 | 
																													
																						| 21 | 程浩东, 韩萌, 张妮, 等. 基于滑动窗口模型的数据流闭合高效用项集挖掘[J]. 计算机研究与发展, 2021, 58 (11): 2500-2514.  10.7544/issn1000-1239.2021.20200554 | 
																													
																						|  | CHENG H D, HAN M, ZHANG N, et al. Closed high utility itemsets mining over data stream based on sliding window model[J]. Journal of Computer Research and Development, 2021, 58 (11): 2500-2514.  10.7544/issn1000-1239.2021.20200554 | 
																													
																						| 22 | HONG T P, LEE C H, WANG S L. An incremental mining algorithm for high average-utility itemsets [C]// Proceedings of the 10th International Symposium on Pervasive Systems, Algorithms, and Networks. Piscataway: IEEE, 2009: 421-425.  10.1109/i-span.2009.24 | 
																													
																						| 23 | AHMED C F, TANBEER S K, JEONG B S, et al. Mining high utility patterns in incremental databases [C]// Proceedings of the 3rd International Conference on Ubiquitous Information Management and Communication. New York: ACM, 2009: 656-663.  10.1145/1516241.1516357 | 
																													
																						| 24 | SONG W, LIU Y, LI J H. Mining high utility itemsets by dynamically pruning the tree structure[J]. Applied Intelligence, 2014, 40 (1): 29-43.  10.1007/s10489-013-0443-7 | 
																													
																						| 25 | LIN J C W, GAN W S, HONG T P, et al. Incrementally updating high-utility itemsets with transaction insertion [C]// Proceedings of the 2014 International Conference on Advanced Data Mining and Applications, LNCS 8933. Cham: Springer, 2014: 44-56. | 
																													
																						| 26 | NGUYEN L T T, VU D B, NGUYEN T D D, et al. Mining maximal high utility itemsets on dynamic profit databases[J]. Cybernetics and Systems, 2020, 51 (2): 140-160.  10.1080/01969722.2019.1705549 | 
																													
																						| 27 | FOURNIER-VIGER P, GOMARIZ A, GUENICHE T, et al. SPMF: a Java open-source pattern mining library[J]. Journal of Machine Learning Research, 2014, 15: 3569-3573. |