| 1 | AGRAWAL R, SRIKANT R. Mining sequential patterns [C]// Proceedings of the 11th International Conference on Data Engineering. Piscataway: IEEE, 1995: 3-14. | 
																													
																						| 2 | 叶青青, 孟小峰, 朱敏杰, 等. 本地化差分隐私研究综述[J]. 软件学报, 2018, 29 (7): 1981-2005. | 
																													
																						|  | YE Q Q, MENG X F, ZHU M J, et al. Survey on local differential privacy[J]. Journal of Software, 2018, 29 (7): 1981-2005. | 
																													
																						| 3 | SWEENEY L. k-Anonymity: a model for protecting privacy[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10 (5): 557-570.  10.1142/s0218488502001648 | 
																													
																						| 4 | GANTA S R, KASIVISWANATHAN S P, SMITH A. Composition attacks and auxiliary information in data privacy [C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 265-273.  10.1145/1401890.1401926 | 
																													
																						| 5 | WONG R C W, FU A W C, WANG K, et al. Can the utility of anonymized data be used for privacy breaches?[J]. ACM Transactions on Knowledge Discovery from Data, 2011, 5 (3): No.16.  10.1145/1993077.1993080 | 
																													
																						| 6 | DWORK C. Differential privacy [C]// Proceedings of the 2006 International Colloquium on Automata, Languages, and Programming, LNCS 4052. Berlin: Springer, 2006: 1-12. | 
																													
																						| 7 | XIA H H, HUANG W C, XIONG Y, et al. Mining frequent sequential patterns with local differential privacy[J]. International Journal of Network Security, 2021, 23 (5): 817-829. | 
																													
																						| 8 | WANG T, HU Z. Local differential privacy-based frequent sequence mining[J]. Journal of King Saud University — Computer and Information Sciences, 2022, 34 (6 Pt B): 3591-3601.  10.1016/j.jksuci.2022.04.013 | 
																													
																						| 9 | SRIKANT R, AGRAWAL R. Mining sequential patterns: generalizations and performance improvements [C]// Proceedings of the 1996 International Conference on Extending Database Technology, LNCS 1057. Berlin: Springer, 1996: 1-17. | 
																													
																						| 10 | ZAKI M J. SPADE: an efficient algorithm for mining frequent sequences[J]. Machine Learning, 2001, 42 (1/2): 31-60. | 
																													
																						| 11 | FOURNIER-VIGER P, GOMARIZ A, CAMPOS M, et al. Fast vertical mining of sequential patterns using co-occurrence information [C]// Proceedings of the 2014 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 8443. Cham: Springer, 2014: 40-52. | 
																													
																						| 12 | BONOMI L, XIONG L. A two-phase algorithm for mining sequential patterns with differential privacy [C]// Proceedings of the 22nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2013: 269-278.  10.1145/2505515.2505553 | 
																													
																						| 13 | CHENG X, SU S, XU S, et al. Differentially private maximal frequent sequence mining[J]. Computers and Security, 2015, 55: 175-192.  10.1016/j.cose.2015.08.005 | 
																													
																						| 14 | XU S Z, CHENG X, SU S, et al. Differentially private frequent sequence mining[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28 (11): 2910-2926.  10.1109/tkde.2016.2601106 | 
																													
																						| 15 | 李艳辉, 刘浩, 袁野, 等. 基于差分隐私的频繁序列模式挖掘算法[J]. 计算机应用, 2017, 37 (2): 316-321, 340.  10.11772/j.issn.1001-9081.2017.02.0316 | 
																													
																						|  | LI Y H, LIU H, YUAN Y, et al. Frequent sequence pattern mining with differential privacy[J]. Journal of Computer Applications, 2017, 37 (2): 316-321, 340.  10.11772/j.issn.1001-9081.2017.02.0316 | 
																													
																						| 16 | WARNER S L. Randomized response: a survey technique for eliminating evasive answer bias[J]. Journal of the American Statistical Association, 1965, 60 (309): 63-69.  10.1080/01621459.1965.10480775 | 
																													
																						| 17 | ERLINGSSON Ú, PIHUR V, KOROLOVA A. RAPPOR: randomized aggregatable privacy-preserving ordinal response [C]// Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2014: 1054-1067.  10.1145/2660267.2660348 | 
																													
																						| 18 | BASSILY R, SMITH A. Local, private, efficient protocols for succinct histograms [C]// Proceedings of the 47th Annual ACM Symposium on Theory of Computing. New York: ACM, 2015: 127-135.  10.1145/2746539.2746632 | 
																													
																						| 19 | WANG T H, BLOCKI J, LI N H, et al. Locally differentially private protocols for frequency estimation [C]// Proceedings of the 26th USENIX Security Symposium. Berkeley: USENIX Association, 2017: 729-745. | 
																													
																						| 20 | WANG T H, LI N H, JHA S. Locally differentially private heavy hitter identification[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18 (2): 982-993.  10.1109/tdsc.2019.2927695 | 
																													
																						| 21 | ZHAO D, ZHAO S Y, CHEN H, et al. Efficient protocols for heavy hitter identification with local differential privacy[J]. Frontiers of Computer Science, 2022, 16 (5): No.165825.  10.1007/s11704-021-0412-y | 
																													
																						| 22 | YE Q Q, HU H B, MENG X F, et al. PrivKV: key-value data collection with local differential privacy [C]// Proceedings of the 2019 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2019: 317-331.  10.1109/sp.2019.00018 | 
																													
																						| 23 | NGUYÊN T T, XIAO X K, YANG Y, et al. Collecting and analyzing data from smart device users with local differential privacy[EB/OL]. (2016-06-16) [2021-09-27]. . | 
																													
																						| 24 | GU X L, LI M, CHENG Y Q, et al. PCKV: locally differentially private correlated key-value data collection with optimized utility [C]// Proceedings of the 29th USENIX Security Symposium. Berkeley: USENIX Association, 2020: 967-984. | 
																													
																						| 25 | QIN Z, YANG Y, YU T, et al. Heavy hitter estimation over set-valued data with local differential privacy [C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 192-203.  10.1145/2976749.2978409 | 
																													
																						| 26 | WANG S W, HUANG L S, NIE Y W, et al. PrivSet: set-valued data analyses with locale differential privacy [C]// Proceedings of the 2018 IEEE Conference on Computer Communications. Piscataway: IEEE, 2018: 1088-1096.  10.1109/infocom.2018.8486234 | 
																													
																						| 27 | WANG S W, QIAN Y Q, DU J C, et al. Set-valued data publication with local privacy: tight error bounds and efficient mechanisms[J]. Proceedings of the VLDB Endowment, 2020, 13 (8): 1234-1247.  10.14778/3389133.3389140 | 
																													
																						| 28 | WANG T H, LI N H, JHA S. Locally differentially private frequent itemset mining [C]// Proceedings of the 2018 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2018: 127-143.  10.1109/sp.2018.00035 | 
																													
																						| 29 | AFROSE S, HASHEM T, ALI M E. Frequent itemsets mining with a guaranteed local differential privacy in small datasets [C]// Proceedings of the 33rd International Conference on Scientific and Statistical Database Management. New York: ACM, 2021: 232-236.  10.1145/3468791.3468807 | 
																													
																						| 30 | LIU H J, CUI L W, MA X B, et al. Frequent itemset mining of user's multi-attribute under local differential privacy[J]. Computers, Materials & Continua, 2020, 65 (1): 369-385.  10.32604/cmc.2020.010987 | 
																													
																						| 31 | LI N H, QARDAJI W, SU D. On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy [C]// Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security. New York: ACM, 2012: 32-33.  10.1145/2414456.2414474 | 
																													
																						| 32 | WANG N, XIAO X, YANG Y, et al. PrivSuper: a superset-first approach to frequent itemset mining under differential privacy[C]// Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering. Piscataway: IEEE, 2017: 809-820.  10.1109/icde.2017.131 |