| 1 | DUDLEY J T, DESHPANDE T, BUTTE A J. Exploiting drug-disease relationships for computational drug repositioning [J]. Briefings in Bioinformatics, 2011, 12(4): 303-311.  10.1093/bib/bbr013 | 
																													
																						| 2 | GANOTRA G K, WADE R C. Prediction of drug-target binding kinetics by comparative binding energy analysis [J]. ACS Medicinal Chemistry Letters, 2018, 9(11): 1134-1139.  10.1021/acsmedchemlett.8b00397 | 
																													
																						| 3 | CHEN R, LIU X, JIN S, et al. Machine learning for drug-target interaction prediction [J]. Molecules, 2018, 23(9): 2208.  10.3390/molecules23092208 | 
																													
																						| 4 | PESKA L, BUZA K, KOLLER J. Drug-target interaction prediction: a Bayesian ranking approach [J]. Computer Methods and Programs in Biomedicine, 2017, 152: 15-21.  10.1016/j.cmpb.2017.09.003 | 
																													
																						| 5 | YAMANISHI Y, ARAKI M, GUTTERIDGE A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces [J]. Bioinformatics, 2008, 24(13): i232-i240.  10.1093/bioinformatics/btn162 | 
																													
																						| 6 | LÜ L, ZHOU T. Link prediction in complex networks: a survey [J]. Physica A: Statistical Mechanics and its Applications, 2011, 390(6): 1150-1170.  10.1016/j.physa.2010.11.027 | 
																													
																						| 7 | 曾煜妮.面向药物-靶标相互作用预测的多特征学习方法[D].成都:四川大学,2021:83-86. | 
																													
																						|  | ZENG Y N. Multi-feature learning approaches for drug-target interaction prediction [D]. Chengdu: Sichuan University, 2021: 83-86. | 
																													
																						| 8 | LI Y, LIU X-Z, YOU Z-H, et al. A computational approach for predicting drug-target interactions from protein sequence and drug substructure fingerprint information [J]. International Journal of Intelligent Systems, 2021, 36(1): 593-609.  10.1002/int.22332 | 
																													
																						| 9 | ZHANG R, DING Y. Identification of key features of CNS drugs based on SVM and greedy algorithm [J]. Current Computer-Aided Drug Design, 2020, 16(6): 725-733.  10.2174/1573409915666191212095340 | 
																													
																						| 10 | 腾讯科技(深圳)有限公司,上海交通大学.药物与靶标的相互作用预测方法、装置、设备及存储介质: CN201910722794.5 [P]. 2019-11-05. | 
																													
																						|  | Tencent Technology (Shenzhen) Company Limited, Shanghai Jiao Tong University. Drug-target interaction prediction methods, devices, and storage media: CN201910722794.5 [P]. 2019-11-05. | 
																													
																						| 11 | SHARMA A, RANI R. BE-DTI': ensemble framework for drug target interaction prediction using dimensionality reduction and active learning [J]. Computer Methods and Programs in Biomedicine, 2018, 165: 151-162.  10.1016/j.cmpb.2018.08.011 | 
																													
																						| 12 | SHANG Y, GAO L, ZOU Q, et al. Prediction of drug-target interactions based on multi-layer network representation learning [J]. Neurocomputing, 2021, 434: 80-89.  10.1016/j.neucom.2020.12.068 | 
																													
																						| 13 | SHI H, LIU S, CHEN J, et al. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure [J]. Genomics, 2019, 111(6): 1839-1852.  10.1016/j.ygeno.2018.12.007 | 
																													
																						| 14 | NIU Y Q. Supervised prediction of drug-target interactions by ensemble learning [J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(7): 1991-1999. | 
																													
																						| 15 | CHEN H, ZHANG Z. A semi-supervised method for drug-target interaction prediction with consistency in networks [J]. PLoS ONE, 2013, 8(5): e62975.  10.1371/journal.pone.0062975 | 
																													
																						| 16 | MEI J-P, C-K KWOH, YANG P, et al. Drug-target interaction prediction by learning from local information and neighbors [J]. Bioinformatics, 2013, 29(2): 238-245.  10.1093/bioinformatics/bts670 | 
																													
																						| 17 | VAN LAARHOVEN T, MARCHIORI E. Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile [J]. PLoS ONE, 2013, 8(6): e66952.  10.1371/journal.pone.0066952 | 
																													
																						| 18 | TANG D. Spherical evolution for solving continuous optimization problems [J]. Applied Soft Computing, 2019, 81: 105499.  10.1016/j.asoc.2019.105499 | 
																													
																						| 19 | PIOTROWSKI A P. L-SHADE optimization algorithms with population-wide inertia [J]. Information Sciences, 2018, 468: 117-141.  10.1016/j.ins.2018.08.030 | 
																													
																						| 20 | HUANG G-B, ZHU Q-Y, C-K SIEW. Extreme learning machine: a new learning scheme of feedforward neural networks [C]// Proceedings of the 2004 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE, 2004, 2: 985-990. | 
																													
																						| 21 | HUANG G-B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(2): 513-529.  10.1109/tsmcb.2011.2168604 | 
																													
																						| 22 | KANEHISA M, GOTO S, HATTORI M, et al. From genomics to chemical genomics: new developments in KEGG [J]. Nucleic Acids Research, 2006, 34(Database issue): D354-D357.  10.1093/nar/gkj102 | 
																													
																						| 23 | SCHOMBURG I, CHANG A, EBELING C, et al. BRENDA, the enzyme database: updates and major new developments [J]. Nucleic Acids Research, 2004, 32(Database issue): D431-D433.  10.1093/nar/gkh081 | 
																													
																						| 24 | GÜNTHER S, KUHN M, DUNKEL M, et al. SuperTarget and Matador: resources for exploring drug-target relationships [J]. Nucleic Acids Research, 2007, 36(Database issue): D919-D922.  10.1093/nar/gkm862 | 
																													
																						| 25 | WISHART D S, KNOX C, GUO A C, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets [J]. Nucleic Acids Research, 2008, 36(Database issue): D901-D906.  10.1093/nar/gkm958 | 
																													
																						| 26 | MOHAMED S K, NOVÁČEK V, NOUNU A. Discovering protein drug targets using knowledge graph embeddings [J]. Bioinformatics, 2020, 36(2): 603-610.  10.1093/bioinformatics/btz600 | 
																													
																						| 27 | XIA Z, WU L-Y, ZHOU X, et al. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces [J]. BMC Systems Biology, 2010, 4(): S6.  10.1186/1752-0509-4-s2-s6 | 
																													
																						| 28 | KEUM J, NAM H. SELF-BLM: prediction of drug-target interactions via self-training SVM [J]. PLoS ONE, 2017, 12(2): e0171839.  10.1371/journal.pone.0171839 | 
																													
																						| 29 | XIA L-Y, YANG Z-Y, ZHANG H, et al. Improved prediction of drug-target interactions using self-paced learning with collaborative matrix factorization [J]. Journal of Chemical Information and Modeling, 2019, 59(7): 3340-3351.  10.1021/acs.jcim.9b00408 | 
																													
																						| 30 | LIU S, AN J, ZHAO J, et al. Drug-target interaction prediction based on multisource information weighted fusion [J]. Contrast Media & Molecular Imaging, 2021, 2021: 6044256.  10.1155/2021/6044256 | 
																													
																						| 31 | 胡苓芝,傅城州,蔡永铭,等.球形演化极限学习机在药物-靶标相互作用智能预测中的应用[J].华南师范大学学报(自然科学版),2023,55(1):121-128.  10.1186/s12859-023-05153-y | 
																													
																						|  | HU L Z, FU C Z, CAI Y M, et al. Application of spherical evolution extreme learning machine in intelligent prediction of drug target interaction [J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 121-128.  10.1186/s12859-023-05153-y | 
																													
																						| 32 | LAYTON A. The use of isotretinoin in acne [J]. Dermato-Endocrinology, 2009, 1(3): 162-169.  10.4161/derm.1.3.9364 | 
																													
																						| 33 | YE P, YAMASHITA T, POLLOCK D M, et al. Contrasting effects of eplerenone and spironolactone on adrenal cell steroidogenesis [J]. Hormone and Metabolic Research, 2009, 41(1): 35-39.  10.1055/s-0028-1087188 | 
																													
																						| 34 | BENTEL J M, BIRRELL S N, PICKERING M A, et al. Androgen receptor agonist activity of the synthetic progestin, medroxyprogesterone acetate, in human breast cancer cells [J]. Molecular and Cellular Endocrinology, 1999, 154(1/2): 11-20.  10.1016/s0303-7207(99)00109-4 |