《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (8): 2528-2535.DOI: 10.11772/j.issn.1001-9081.2023081177
收稿日期:
2023-08-31
修回日期:
2023-10-23
接受日期:
2023-11-14
发布日期:
2024-08-22
出版日期:
2024-08-10
通讯作者:
杨智
作者简介:
徐航(1999—),男,河南信阳人,硕士研究生,主要研究方向:软件安全分析基金资助:
Hang XU, Zhi YANG(), Xingyuan CHEN, Bing HAN, Xuehui DU
Received:
2023-08-31
Revised:
2023-10-23
Accepted:
2023-11-14
Online:
2024-08-22
Published:
2024-08-10
Contact:
Zhi YANG
About author:
XU Hang, born in 1999, M. S. candidate. His research interests include software security analysis.Supported by:
摘要:
针对覆盖引导的模糊测试(CGF)中存在大量无效变异且造成性能浪费的问题,提出一种自适应敏感区域变异算法。首先,根据变异出的测试用例是否执行新路径将对应的变异位置分为有效变异位置集合和无效变异位置集合;然后,基于有效变异位置确定敏感区域,将后续的变异集中在敏感区域内。在后续的模糊测试过程中,根据测试用例的执行结果自适应地调整对应种子的敏感区域,减少无效变异。此外,设计新的种子选择策略配合敏感区域变异。将自适应敏感区域算法集成至美国模糊循环(AFL),并将它命名为SMAFL(Sensitive-region-based Mutation American Fuzzy Lop)。在12个流行的应用程序上评估SMAFL,实验结果表明,与AFL相比,当初始种子数为1时,SMAFL发现的路径数平均提升了31.4%,模糊次数增加了3.4倍;并且在12个程序中都实现了更高的代码覆盖率。在对LAVA-M数据集的测试中,SMAFL比AFL多发现2个bug,并且发现相同bug所用时间更短。整体地,自适应敏感区域变异算法能提升模糊测试器的探索效率。
中图分类号:
徐航, 杨智, 陈性元, 韩冰, 杜学绘. 基于自适应敏感区域变异的覆盖引导模糊测试[J]. 计算机应用, 2024, 44(8): 2528-2535.
Hang XU, Zhi YANG, Xingyuan CHEN, Bing HAN, Xuehui DU. Coverage-guided fuzzing based on adaptive sensitive region mutation[J]. Journal of Computer Applications, 2024, 44(8): 2528-2535.
变异类型 | 确定变异 | 随机变异 | ||
---|---|---|---|---|
长度 | 步长 | 长度 | 位置 | |
位翻转 | 1/2/4比特 | 1比特 | 1比特 | 随机 |
字节翻转 | 1/2/4字节 | 1字节 | — | |
算术运算 | 1/2/4字节 | 1字节 | 1/2/4字节 | |
趣值复写 | 1/2/4字节 | 1字节 | 1/2/4字节 | |
字典复写/插入 | 字典值长度 | 1字节 | 字典值长度 | |
随机值复写 | — | — | 1字节 | |
块复写/插入/删除 | — | — | 块长度 |
表 1 变异算子
Tab. 1 Mutation operations
变异类型 | 确定变异 | 随机变异 | ||
---|---|---|---|---|
长度 | 步长 | 长度 | 位置 | |
位翻转 | 1/2/4比特 | 1比特 | 1比特 | 随机 |
字节翻转 | 1/2/4字节 | 1字节 | — | |
算术运算 | 1/2/4字节 | 1字节 | 1/2/4字节 | |
趣值复写 | 1/2/4字节 | 1字节 | 1/2/4字节 | |
字典复写/插入 | 字典值长度 | 1字节 | 字典值长度 | |
随机值复写 | — | — | 1字节 | |
块复写/插入/删除 | — | — | 块长度 |
程序 | 版本 | 目标程序 大小/MB | 输入格式 | 输入参数 |
---|---|---|---|---|
cflow | 1.7 | 0.7 | c | cflow @@ |
nm-new | 2.40 | 7.4 | elf | nm-new -C @@ |
objdump | 2.40 | 12.0 | elf | objdump -d @@ |
pngfix | 1.6.39 | 1.2 | png | pngfix @@ |
readelf | 2.40 | 4.6 | elf | readelf -a @@ |
size | 2.40 | 7.3 | elf | size @@ |
tcpdump | 4.99.3 | 5.7 | pcap | tcpdump -nr @@ |
tiff2pdf | 4.5.0 | 2.1 | tiff | tiff2pdf @@ |
tiff2ps | 4.5.0 | 1.7 | tiff | tiff2ps @@ |
tiff2rgba | 4.5.0 | 1.8 | tiff | tiff2rgba -c none @@ |
tiffset | 4.5.0 | 1.6 | tiff | tiffset @@ |
xmllint | 2.9.12 | 6.5 | xml | xmllint @@ |
表2 被测程序基本信息
Tab. 2 Basic information of tested programs
程序 | 版本 | 目标程序 大小/MB | 输入格式 | 输入参数 |
---|---|---|---|---|
cflow | 1.7 | 0.7 | c | cflow @@ |
nm-new | 2.40 | 7.4 | elf | nm-new -C @@ |
objdump | 2.40 | 12.0 | elf | objdump -d @@ |
pngfix | 1.6.39 | 1.2 | png | pngfix @@ |
readelf | 2.40 | 4.6 | elf | readelf -a @@ |
size | 2.40 | 7.3 | elf | size @@ |
tcpdump | 4.99.3 | 5.7 | pcap | tcpdump -nr @@ |
tiff2pdf | 4.5.0 | 2.1 | tiff | tiff2pdf @@ |
tiff2ps | 4.5.0 | 1.7 | tiff | tiff2ps @@ |
tiff2rgba | 4.5.0 | 1.8 | tiff | tiff2rgba -c none @@ |
tiffset | 4.5.0 | 1.6 | tiff | tiffset @@ |
xmllint | 2.9.12 | 6.5 | xml | xmllint @@ |
程序 | AFL | SMAFL | AFLFast | SMAFLFast | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
s=1 | s=5 | s=1 | s=1的 增幅/% | s=5 | s=5的 增幅/% | s=1 | s=5 | s=1 | s=1的 增幅/% | s=5 | s=5的 增幅/% | |
平均值 | 2192.6 | 1 494.5 | 2 981.3 | +31.4 | 2150.6 | +47.0 | 2 453.7 | 1 632.6 | 2 581.3 | +3.7 | 1 740.5 | +7.9 |
cflow | 1 280.0 | 866.8 | 1 312.8 | +2.6 | 930.0 | +7.3 | 1 437.6 | 855.2 | 1 462.2 | +1.7 | 874.4 | +2.2 |
nm-new | 1 874.2 | 804.0 | 2 906.4 | +55.1 | 1 391.8 | +73.1 | 2 190.6 | 873.4 | 2 189.6 | +0.0 | 958.8 | +9.8 |
objdump | 1 963.8 | 1 687.6 | 3 400.4 | +73.2 | 1 977.4 | +17.2 | 2 528.0 | 1 775.4 | 2 562.8 | +1.4 | 1 745.0 | -1.7 |
pngfix | 676.4 | 344.0 | 750.6 | +11.0 | 604.0 | +75.6 | 737.2 | 543.6 | 750.6 | +1.8 | 557.0 | +2.5 |
readelf | 4 394.8 | 2 245.0 | 6 876.8 | +56.5 | 2 411.2 | +7.4 | 5 955.4 | 2 106.0 | 6 571.0 | +10.3 | 2 129.4 | +1.1 |
size | 1 481.6 | 764.6 | 1 740.0 | +17.4 | 1 260.2 | +64.8 | 1 289.0 | 827.2 | 1 312.0 | +1.8 | 922.4 | +11.5 |
tcpdump | 2 918.0 | 1 575.6 | 4 481.2 | +53.6 | 2 665.8 | +69.2 | 3 390.6 | 1 136.4 | 3 724.0 | +9.8 | 1 704.4 | +50.0 |
tiff2pdf | 3 023.0 | 2 330.2 | 3 631.0 | +20.1 | 3 628.8 | +55.7 | 2 761.2 | 2 686.6 | 3 155.0 | +14.3 | 3 034.0 | +12.9 |
tiff2ps | 2 042.6 | 1 528.0 | 2 452.4 | +20.1 | 2 280.4 | +49.2 | 2 160.8 | 1 998.2 | 2 161.0 | +0.0 | 2 089.2 | +4.6 |
tiff2rgba | 2 875.4 | 1 827.4 | 3 805.6 | +32.4 | 3 504.6 | +91.8 | 2 836.0 | 2 792.6 | 3 093.6 | +9.1 | 2 904.0 | +4.0 |
tiffset | 1 478.4 | 1 425.2 | 1 792.8 | +21.3 | 1 591.6 | +11.7 | 1 463.4 | 1 492.8 | 1 473.6 | +0.7 | 1 476.2 | -1.1 |
xmllint | 2 302.8 | 2 535.8 | 2 625.6 | +14.0 | 3 561.4 | +40.4 | 2 694.8 | 2 503.8 | 2 519.8 | -6.5 | 2 490.8 | -0.5 |
表3 发现的路径数对比
Tab. 3 Comparison of discovered paths
程序 | AFL | SMAFL | AFLFast | SMAFLFast | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
s=1 | s=5 | s=1 | s=1的 增幅/% | s=5 | s=5的 增幅/% | s=1 | s=5 | s=1 | s=1的 增幅/% | s=5 | s=5的 增幅/% | |
平均值 | 2192.6 | 1 494.5 | 2 981.3 | +31.4 | 2150.6 | +47.0 | 2 453.7 | 1 632.6 | 2 581.3 | +3.7 | 1 740.5 | +7.9 |
cflow | 1 280.0 | 866.8 | 1 312.8 | +2.6 | 930.0 | +7.3 | 1 437.6 | 855.2 | 1 462.2 | +1.7 | 874.4 | +2.2 |
nm-new | 1 874.2 | 804.0 | 2 906.4 | +55.1 | 1 391.8 | +73.1 | 2 190.6 | 873.4 | 2 189.6 | +0.0 | 958.8 | +9.8 |
objdump | 1 963.8 | 1 687.6 | 3 400.4 | +73.2 | 1 977.4 | +17.2 | 2 528.0 | 1 775.4 | 2 562.8 | +1.4 | 1 745.0 | -1.7 |
pngfix | 676.4 | 344.0 | 750.6 | +11.0 | 604.0 | +75.6 | 737.2 | 543.6 | 750.6 | +1.8 | 557.0 | +2.5 |
readelf | 4 394.8 | 2 245.0 | 6 876.8 | +56.5 | 2 411.2 | +7.4 | 5 955.4 | 2 106.0 | 6 571.0 | +10.3 | 2 129.4 | +1.1 |
size | 1 481.6 | 764.6 | 1 740.0 | +17.4 | 1 260.2 | +64.8 | 1 289.0 | 827.2 | 1 312.0 | +1.8 | 922.4 | +11.5 |
tcpdump | 2 918.0 | 1 575.6 | 4 481.2 | +53.6 | 2 665.8 | +69.2 | 3 390.6 | 1 136.4 | 3 724.0 | +9.8 | 1 704.4 | +50.0 |
tiff2pdf | 3 023.0 | 2 330.2 | 3 631.0 | +20.1 | 3 628.8 | +55.7 | 2 761.2 | 2 686.6 | 3 155.0 | +14.3 | 3 034.0 | +12.9 |
tiff2ps | 2 042.6 | 1 528.0 | 2 452.4 | +20.1 | 2 280.4 | +49.2 | 2 160.8 | 1 998.2 | 2 161.0 | +0.0 | 2 089.2 | +4.6 |
tiff2rgba | 2 875.4 | 1 827.4 | 3 805.6 | +32.4 | 3 504.6 | +91.8 | 2 836.0 | 2 792.6 | 3 093.6 | +9.1 | 2 904.0 | +4.0 |
tiffset | 1 478.4 | 1 425.2 | 1 792.8 | +21.3 | 1 591.6 | +11.7 | 1 463.4 | 1 492.8 | 1 473.6 | +0.7 | 1 476.2 | -1.1 |
xmllint | 2 302.8 | 2 535.8 | 2 625.6 | +14.0 | 3 561.4 | +40.4 | 2 694.8 | 2 503.8 | 2 519.8 | -6.5 | 2 490.8 | -0.5 |
程序 | AFL | SMAFL | AFLFast | SMAFLFast | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
s=1 | s=5 | s=1 | s=1的 增幅/% | s=5 | s=5的 增幅/% | s=1 | s=5 | s=1 | s=1的 增幅/% | s=5 | s=5的 增幅/% | |
平均值 | 818.7 | 208.2 | 4 675.8 | +342.3 | 859.5 | +448.4 | 652.3 | 207.6 | 2 839.3 | +157.1 | 258.6 | +34.2 |
cflow | 193.2 | 8.2 | 213.0 | +10.2 | 43.8 | +434.1 | 286.2 | 7.6 | 301.6 | +5.4 | 7.8 | +2.6 |
nm-new | 644.2 | 87.4 | 1 561.0 | +142.3 | 233.2 | +166.8 | 666.4 | 58.2 | 784.4 | +17.7 | 93.4 | +60.5 |
objdump | 466.0 | 77.0 | 1 376.8 | +195.5 | 143.4 | +86.2 | 618.8 | 40.2 | 609.4 | -1.2 | 45.6 | +13.4 |
pngfix | 2 079.6 | 29.0 | 26 984.6 | +1 197.6 | 794.6 | +2 640.0 | 1 454.8 | 110.8 | 26 985.1 | +1 754.8 | 157.6 | +42.2 |
readelf | 817.8 | 133.8 | 1 476.4 | +80.5 | 212.2 | +58.6 | 756.4 | 81.2 | 820.8 | +8.5 | 100.6 | +24.0 |
size | 826.0 | 80.4 | 2 023.2 | +144.9 | 320.0 | +298.0 | 350.4 | 73.8 | 371.4 | +6.0 | 84.2 | +14.1 |
tcpdump | 1 583.0 | 148.0 | 4 555.2 | +187.8 | 513.2 | +246.8 | 878.0 | 65.2 | 1 015.2 | +15.6 | 165.0 | +153.1 |
tiff2pdf | 641.2 | 376.6 | 1 858.8 | +189.9 | 1 120.8 | +197.6 | 472.6 | 401.8 | 683.4 | +44.6 | 536.8 | +33.6 |
tiff2ps | 548.8 | 371.8 | 3 717.6 | +577.4 | 1 430.0 | +284.6 | 535.2 | 428.2 | 543.0 | +1.5 | 502.2 | +17.3 |
tiff2rgba | 664.6 | 348.0 | 1 893.8 | +185.0 | 1 320.8 | +279.5 | 619.8 | 541.0 | 772.8 | +24.7 | 636.4 | +17.6 |
tiffset | 764.8 | 551.8 | 9 634.0 | +1 159.7 | 3 405.6 | +517.2 | 466.8 | 482.0 | 569.8 | +22.1 | 529.0 | +9.8 |
xmllint | 594.8 | 286.8 | 815.4 | +37.1 | 776.8 | +170.9 | 724.6 | 200.6 | 615.6 | -15.0 | 244.8 | +22.0 |
表4 模糊次数对比
Tab. 4 Comparison of fuzzed counts
程序 | AFL | SMAFL | AFLFast | SMAFLFast | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
s=1 | s=5 | s=1 | s=1的 增幅/% | s=5 | s=5的 增幅/% | s=1 | s=5 | s=1 | s=1的 增幅/% | s=5 | s=5的 增幅/% | |
平均值 | 818.7 | 208.2 | 4 675.8 | +342.3 | 859.5 | +448.4 | 652.3 | 207.6 | 2 839.3 | +157.1 | 258.6 | +34.2 |
cflow | 193.2 | 8.2 | 213.0 | +10.2 | 43.8 | +434.1 | 286.2 | 7.6 | 301.6 | +5.4 | 7.8 | +2.6 |
nm-new | 644.2 | 87.4 | 1 561.0 | +142.3 | 233.2 | +166.8 | 666.4 | 58.2 | 784.4 | +17.7 | 93.4 | +60.5 |
objdump | 466.0 | 77.0 | 1 376.8 | +195.5 | 143.4 | +86.2 | 618.8 | 40.2 | 609.4 | -1.2 | 45.6 | +13.4 |
pngfix | 2 079.6 | 29.0 | 26 984.6 | +1 197.6 | 794.6 | +2 640.0 | 1 454.8 | 110.8 | 26 985.1 | +1 754.8 | 157.6 | +42.2 |
readelf | 817.8 | 133.8 | 1 476.4 | +80.5 | 212.2 | +58.6 | 756.4 | 81.2 | 820.8 | +8.5 | 100.6 | +24.0 |
size | 826.0 | 80.4 | 2 023.2 | +144.9 | 320.0 | +298.0 | 350.4 | 73.8 | 371.4 | +6.0 | 84.2 | +14.1 |
tcpdump | 1 583.0 | 148.0 | 4 555.2 | +187.8 | 513.2 | +246.8 | 878.0 | 65.2 | 1 015.2 | +15.6 | 165.0 | +153.1 |
tiff2pdf | 641.2 | 376.6 | 1 858.8 | +189.9 | 1 120.8 | +197.6 | 472.6 | 401.8 | 683.4 | +44.6 | 536.8 | +33.6 |
tiff2ps | 548.8 | 371.8 | 3 717.6 | +577.4 | 1 430.0 | +284.6 | 535.2 | 428.2 | 543.0 | +1.5 | 502.2 | +17.3 |
tiff2rgba | 664.6 | 348.0 | 1 893.8 | +185.0 | 1 320.8 | +279.5 | 619.8 | 541.0 | 772.8 | +24.7 | 636.4 | +17.6 |
tiffset | 764.8 | 551.8 | 9 634.0 | +1 159.7 | 3 405.6 | +517.2 | 466.8 | 482.0 | 569.8 | +22.1 | 529.0 | +9.8 |
xmllint | 594.8 | 286.8 | 815.4 | +37.1 | 776.8 | +170.9 | 724.6 | 200.6 | 615.6 | -15.0 | 244.8 | +22.0 |
程序 | AFL | SMAFL | 程序 | AFL | SMAFL |
---|---|---|---|---|---|
base64 | 0 | 0 | uniq | 0 | 0 |
md5sum | 7 | 7 | who | 1 | 3 |
表5 LAVA-M中发现bug数对比
Tab. 5 Comparison of bugs found in LAVA-M
程序 | AFL | SMAFL | 程序 | AFL | SMAFL |
---|---|---|---|---|---|
base64 | 0 | 0 | uniq | 0 | 0 |
md5sum | 7 | 7 | who | 1 | 3 |
1 | ZALEWSKI M. American Fuzzy Lop (AFL) fuzzer [EB/OL]. [2022-07-06]. . |
2 | DOLAN-GAVITT B, HULIN P, KIRDA E, et al. LAVA: large-scale automated vulnerability addition [C]// Proceedings of the 2016 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2016: 110-121. |
3 | Google. LibFuzzer: a library for coverage-guided fuzz testing [EB/OL]. [2022-07-06]. . |
4 | YAN S, WU C, LI H, et al. PathAFL: path-coverage assisted fuzzing [C]// Proceedings of the 15th ACM Asia Conference on Computer and Communications Security. New York: ACM. 2020:598-609. |
5 | BÖHME M, V-T PHAM, ROYCHOUDURY A. Coverage-based greybox fuzzing as Markov chain [C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 1032-1043. |
6 | NAGY S, HICKS M. Full-speed fuzzing: reducing fuzzing overhead through coverage-guided tracing [C]// Proceedings of the 2019 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2019: 787-802. |
7 | ZHU X, FENG X, MENG X, et al. CSI-Fuzz: full-speed edge tracing using coverage sensitive instrumentation[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(2): 912-923. |
8 | AHMED A, HISER J D, NGUYEN-TUONG A, et al. BigMap: future-proofing fuzzers with efficient large maps [C]// Proceedings of the 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks. Piscataway: IEEE, 2021: 531-542. |
9 | SHE D, SHAH A, JANA S. Effective seed scheduling for fuzzing with graph centrality analysis [C]// Proceedings of the 2022 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2022: 2194-2211. |
10 | LYU C, JI S, ZHANG X, et al. EMS: history-driven mutation for coverage-based fuzzing [C/OL]// Proceedings of the 29th Annual Network and Distributed System Security Symposium. (2022-04-24)[2023-08-01]. . |
11 | WU M, JIANG L, XIANG J, et al. One fuzzing strategy to rule them all [C]// Proceedings of the 44th International Conference on Software Engineering. Piscataway: IEEE, 2022: 1634-1645. |
12 | LEE M, CHA S, OH H. Learning seed-adaptive mutation strategies for greybox fuzzing [C]// Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering. Piscataway: IEEE, 2023: 384-396. |
13 | LYU C, JI S, ZHANG C, et al. MOPT: optimized mutation scheduling for fuzzers [C]// Proceedings of the 28th USENIX Security Symposium. Berkeley: USENIX Association, 2019:1949-1966. |
14 | 张羿辰, 赵磊, 金银山. 模糊测试中基于神经网络的敏感区域预测算法研究[J]. 信息安全学报, 2020, 5(1): 10-19. |
ZHANG Y C, ZHAO L, JIN Y S. Sensitive region prediction based on neural network in fuzzy test algorithm research [J]. Journal of Cyber Security, 2020, 5(1): 10-19. | |
15 | ZALEWSKI M. Technical whitepaper for AFL-fuzz [EB/OL]. [2022-07-06]. . |
16 | YUE T, WANG P, TANG Y, et al. EcoFuzz: adaptive energy-saving greybox fuzzing as a variant of the adversarial Multi-Armed bandit [C]// Proceedings of the 29th USENIX Security Symposium. Berkeley: USENIX Association, 2020: 2307-2324. |
17 | GAN S, ZHANG C, QIN X, et al. CollAFL: path sensitive fuzzing [C]// Proceedings of the 2018 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2018: 679-696. |
18 | LEE G, W-J SHIM, LEE B. Constraint-guided directed greybox fuzzing[C]// Proceedings of the 30th USENIX Security Symposium. Berkeley: USENIX Association, 2021: 3559-3576. |
19 | HSU C-C, WU C-Y, H-C HSIAO, et al. INSTRIM: lightweight instrumentation for coverage-guided fuzzing [EB/OL].[2023-08-01]. . |
20 | RAWAT S, JAIN V, KUMAR A, et al. VUzzer: application-aware evolutionary fuzzing [C/OL]// Proceedings of the 24th Annual Network and Distributed System Security Symposium. (2017-02-27)[2023-08-01]. . |
21 | 李明磊, 陆余良, 黄晖, 等. 模糊测试变异算子调度优化模型 [J].小型微型计算机系统,2021, 42(10): 2190-2195. |
LI M L, LU Y L, HUANG H, et al. Fuzzy tester mutation operator scheduling optimization algorithm [J]. Journal of Chinese Computer Systems, 2021, 42(10): 2190-2195. | |
22 | PENG H, SHOSHITAISHVILI Y, PAYER M. T-Fuzz: fuzzing by program transformation [C]// Proceedings of the 2018 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2018: 697-710. |
23 | CHEN P, CHEN H. Angora: efficient fuzzing by principled search [C]// Proceedings of the 2018 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2018: 711-725. |
24 | ASCHERMANN C, SCHUMILO S, BLAZYTKO T, et al. REDQUEEN: fuzzing with input-to-state correspondence [EB/OL]. [2023-08-01]. . |
25 | 邹燕燕, 邹维, 尹嘉伟, 等. 变异策略感知的并行模糊测试研究[J]. 信息安全学报, 2020, 5(5):1-16. |
ZOU Y Y, ZOU W, YIN J W, et al. Research on mutator strategy-aware parallel fuzzing [J]. Journal of Cyber Security, 2020, 5(5):1-16. | |
26 | LI Y, CHEN B, CHANDRAMOHAN M, et al. Steelix: program-state based binary fuzzing [C]// Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. New York: ACM, 2017: 627-637. |
[1] | 田甜, 邵阳阳, 王苗苗, 杨欢. 基于程序依赖关系的变异体生成策略[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2863-2870. |
[2] | 杨乐, 张达敏, 何庆, 邓佳欣, 左锋琴. 改进猎人猎物优化算法在WSN覆盖中的应用[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2506-2513. |
[3] | 李牧, 骆宇, 柯熙政. 基于调频连续波雷达的人体生命体征检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1978-1986. |
[4] | 蔡锦辉, 尹中旭, 宗国笑, 李俊儒. 面向嵌套分支突破的推断与污点分析融合的方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3823-3830. |
[5] | 刘羿希, 何俊, 吴波, 刘丙童, 李子玉. DevSecOps中软件安全性测试技术综述[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3470-3478. |
[6] | 李大海, 詹美欣, 王振东. 基于多个改进策略的增强麻雀搜索算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2845-2854. |
[7] | 高昊, 张庆科, 卜降龙, 李俊青, 张化祥. 基于协同变异与莱维飞行策略的教与学优化算法及其应用[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1355-1364. |
[8] | 张玉杰, 王帆. 基于改进麻雀搜索算法的照明控制优化[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 835-841. |
[9] | 张仲华, 赵福媛, 郭钧枫, 赵高长. 柯西自适应回溯搜索与最小二乘支持向量机的集成预测模型[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1829-1836. |
[10] | 陈亮, 汤显峰. 改进正余弦算法优化特征选择及数据分类[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1852-1861. |
[11] | 倪萍, 陈伟. 基于模糊测试的反射型跨站脚本漏洞检测[J]. 计算机应用, 2021, 41(9): 2594-2601. |
[12] | 付安兵, 魏文红, 张宇辉, 郭文静. 基于准反向变异的实数笛卡尔遗传编程算法[J]. 计算机应用, 2021, 41(2): 479-485. |
[13] | 李丽荣, 杨坤, 王培崇. 融合头脑风暴思想的教与学优化算法[J]. 计算机应用, 2020, 40(9): 2677-2682. |
[14] | 郭秀婷, 朱昶胜, 张生财, 赵奎鹏. 分形插值在风速时间序列中的应用[J]. 计算机应用, 2020, 40(9): 2628-2633. |
[15] | 王博, 刘连生, 韩绍程, 祝世兴. 基于多策略融合的混合多目标蝗虫优化算法[J]. 计算机应用, 2020, 40(9): 2670-2676. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||