| 1 | KOTARIDIS I, LAZARIDOU M. Remote sensing image segmentation advances: a meta-analysis [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 309-322.  10.1016/j.isprsjprs.2021.01.020 | 
																													
																						| 2 | DOSOViTSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. [2023-05-22]. . | 
																													
																						| 3 | ALEISSAEE A A, KUMAR A, ANWER R M, et al. Transformers in remote sensing: a survey [EB/OL]. [2023-02-11]. .  10.3390/rs15071860 | 
																													
																						| 4 | NASEER M, RANASINGHE K, KHAN S H, et al. Intriguing properties of vision Transformers [J]. Advances in Neural Information Processing Systems, 2021, 34: 23296-23308. | 
																													
																						| 5 | 傅励瑶,尹梦晓,杨锋.基于Transformer的U型医学图像分割网络综述[J].计算机应用,2023,43(5):1584-1595. | 
																													
																						|  | FU L Y, YIN M X, YANG F. Transformer based U-shaped medical image segmentation network: a survey [J]. Journal of Computer Applications, 2023, 43(5): 1584-1595. | 
																													
																						| 6 | 王利,宣士斌,秦续阳,等.基于双解码器的Transformer多目标跟踪方法[J].计算机应用,2023, 43(6): 1919-1929. | 
																													
																						|  | WANG L, XUAN S B, QIN X Y, et al. Multi-object tracking method based on dual-decoder Transformer [J]. Journal of Computer Applications, 2023, 43(6): 1919-1929. | 
																													
																						| 7 | XU Z, ZHANG W, ZHANG T, et al. Efficient Transformer for remote sensing image segmentation [J]. Remote Sensing, 2021, 13(18): 3585.  10.3390/rs13183585 | 
																													
																						| 8 | YUAN X, SHI J, GU L. A review of deep learning methods for semantic segmentation of remote sensing imagery [J]. Expert Systems with Applications, 2021, 169: 114417.  10.1016/j.eswa.2020.114417 | 
																													
																						| 9 | ZHAO T, XU J, CHEN R, et al. Remote sensing image segmentation based on the fuzzy deep convolutional neural network[J]. International Journal of Remote Sensing, 2021, 42(16): 6264-6283.  10.1080/01431161.2021.1938738 | 
																													
																						| 10 | LIN T-Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.  10.1109/cvpr.2017.106 | 
																													
																						| 11 | KIRILLOV A, GIRSHICK R, HE K, et al. Panoptic feature pyramid networks [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6392-6401.  10.1109/cvpr.2019.00656 | 
																													
																						| 12 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440.  10.1109/cvpr.2015.7298965 | 
																													
																						| 13 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. | 
																													
																						| 14 | ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239.  10.1109/cvpr.2017.660 | 
																													
																						| 15 | CHEN L-C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs [EB/OL]. (2014-12-22) [2023-01-10]. .  10.1109/tpami.2017.2699184 | 
																													
																						| 16 | CHEN L-C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.  10.1109/tpami.2017.2699184 | 
																													
																						| 17 | CHEN L-C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL].[2023-01-10]. .  10.1007/978-3-030-01234-2_49 | 
																													
																						| 18 | CHEN L-C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 833-851.  10.1007/978-3-030-01234-2_49 | 
																													
																						| 19 | ZHENG S, LU J, ZHAO H, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with Transformers [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 6877-6886.  10.1109/cvpr46437.2021.00681 | 
																													
																						| 20 | STRUDEL R, GARCIA R, LAPTEV I, et al. Segmenter: Transformer for semantic segmentation [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 7242-7252.  10.1109/iccv48922.2021.00717 | 
																													
																						| 21 | XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with Transformers [J]. Advances in Neural Information Processing Systems, 2021, 34: 12077-12090. | 
																													
																						| 22 | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision Transformer using shifted windows [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10012-10022.  10.1109/iccv48922.2021.00986 | 
																													
																						| 23 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.  10.1109/cvpr.2018.00745 | 
																													
																						| 24 | International Society for Photogrammetry and Remote Sensing. 2D semantic labeling contest — Potsdam [DB/OL]. [2023-06-21].. |