| 1 | 曹家乐,李亚利,孙汉卿,等.基于深度学习的视觉目标检测技术综述[J].中国图象图形学报,2022,27(6):1697-1722.  10.11834/jig.220069 | 
																													
																						|  | CAO J L, LI Y L, SUN H Q, et al. A survey on deep learning based visual object detection [J]. Journal of Image and Graphics, 2022,27(6):1697-1722.  10.11834/jig.220069 | 
																													
																						| 2 | 赵永强, 饶元, 董世鹏, 等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4): 629-654.  10.11834/jig.190307 | 
																													
																						|  | ZHAO Y Q, RAO Y, DONG S P, et al. Survey on deep learning object detection [J]. Journal of Image and Graphics, 2020, 25(4): 629-654.  10.11834/jig.190307 | 
																													
																						| 3 | 张振伟,郝建国,黄健,等. 小样本图像目标检测研究综述[J]. 计算机工程与应用, 2022,58(5):1-11.  10.3778/j.issn.1002-8331.2109-0405 | 
																													
																						|  | ZHANG Z W, HAO J G, HUANG J, et al. Review of few-shot object detection [J]. Computer Engineering and Applications, 2022, 58(5): 1-11.  10.3778/j.issn.1002-8331.2109-0405 | 
																													
																						| 4 | WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9919-9928. | 
																													
																						| 5 | ZHANG W, WANG Y-X. Hallucination improves few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13003-13012.  10.1109/cvpr46437.2021.01281 | 
																													
																						| 6 | ZHANG G, LUO Z, CUI K, et al. Meta-DETR: few-shot object detection via unified image-level meta-learning [EB/OL]. [2022-05-22]. .  10.1109/tpami.2022.3195735 | 
																													
																						| 7 | FAN Z, MA Y, LI Z, et al. Generalized few-shot object detection without forgetting [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4525-4534.  10.1109/cvpr46437.2021.00450 | 
																													
																						| 8 | HU H, BAI S, LI A, et al. Dense relation distillation with context-aware aggregation for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10180-10189.  10.1109/cvpr46437.2021.01005 | 
																													
																						| 9 | XIAO Y, LEPETIT V, MARLET R. Few-shot object detection and viewpoint estimation for objects in the wild [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3090-3106. | 
																													
																						| 10 | FAN Q, ZHUO W, TANG C-K, et al. Few-shot object detection with Attention-RPN and multi-relation detector [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4012-4021.  10.1109/cvpr42600.2020.00407 | 
																													
																						| 11 | LENG J, CHEN T, GAO X, et al. A comparative review of recent few-shot object detection algorithms [EB/OL]. [2023-01-22]. . | 
																													
																						| 12 | DAI Y, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion [C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3559-3568.  10.1109/wacv48630.2021.00360 | 
																													
																						| 13 | WANG Y-X, RAMANAN D, HEBERT M. Meta-learning to detect rare objects [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9924-9933.  10.1109/iccv.2019.01002 | 
																													
																						| 14 | YAN X, CHEN Z, XU A, et al. Meta R-CNN: towards general solver for instance-level low-shot learning [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9576-9585.  10.1109/iccv.2019.00967 | 
																													
																						| 15 | WU J, LIU S, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection [C]// Proceedings of the 2020 European Conference on Computer Vision. Cham: Springer, 2020: 456-472.  10.1007/978-3-030-58517-4_27 | 
																													
																						| 16 | ZHANG D, PU H, LI F, et al. Few-shot object detection based on the Transformer and high-resolution network [J]. Computers, Materials & Continua, 2023, 74(2): 3439-3454.  10.32604/cmc.2023.027267 | 
																													
																						| 17 | LU Y, CHEN X, WU Z, et al. Decoupled metric network for single-stage few-shot object detection [J]. IEEE Transactions on Cybernetics, 2023, 53(1): 514-525.  10.1109/tcyb.2022.3149825 | 
																													
																						| 18 | WU A, HAN Y, ZHU L, et al. Universal-prototype enhancing for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9547-9556.  10.1109/iccv48922.2021.00943 | 
																													
																						| 19 | SUN B, LI B, CAI S, et al. FSCE: few-shot object detection via contrastive proposal encoding [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7348-7358.  10.1109/cvpr46437.2021.00727 | 
																													
																						| 20 | ZHU C, CHEN F, AHMED U, et al. Semantic relation reasoning for shot-stable few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8778-8787.  10.1109/cvpr46437.2021.00867 | 
																													
																						| 21 | HAN G, HE Y, HUANG S, et al. Query adaptive few-shot object detection with heterogeneous graph convolutional networks [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3243-3252.  10.1109/iccv48922.2021.00325 | 
																													
																						| 22 | LI Y, ZHU H, CHENG Y, et al. Few-shot object detection via classification refinement and distractor retreatment [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 15390-15398.  10.1109/cvpr46437.2021.01514 |