《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (1): 113-122.DOI: 10.11772/j.issn.1001-9081.2023060853
所属专题: 人工智能
        
                    
            朱俊宏1, 赖俊宇1,2( ), 甘炼强1, 陈智勇1, 刘华烁1, 徐国尧1
), 甘炼强1, 陈智勇1, 刘华烁1, 徐国尧1
                  
        
        
        
        
    
收稿日期:2023-06-30
									
				
											修回日期:2023-10-10
									
				
											接受日期:2023-10-13
									
				
											发布日期:2024-01-24
									
				
											出版日期:2024-01-10
									
				
			通讯作者:
					赖俊宇
							作者简介:朱俊宏(1998—),男,四川德阳人,硕士研究生,主要研究方向:计算机视觉、视频预测;基金资助:
        
                                                                                                                                                            Junhong ZHU1, Junyu LAI1,2( ), Lianqiang GAN1, Zhiyong CHEN1, Huashuo LIU1, Guoyao XU1
), Lianqiang GAN1, Zhiyong CHEN1, Huashuo LIU1, Guoyao XU1
			  
			
			
			
                
        
    
Received:2023-06-30
									
				
											Revised:2023-10-10
									
				
											Accepted:2023-10-13
									
				
											Online:2024-01-24
									
				
											Published:2024-01-10
									
			Contact:
					Junyu LAI   
							About author:ZHU Junhong, born in 1998, M. S. candidate. His research interests include computer vision, video prediction.Supported by:摘要:
针对基于传统深度学习的视频预测中对数据空间特征提取效果不佳及预测精度低的问题,提出一种结合内卷与卷积算子(CICO)的视频预测模型。该模型主要通过以下三个方面提高视频序列的预测性能:首先,采用不同大小的卷积核增强对数据多粒度空间特征的提取能力,较大的卷积核能够提取更大空间范围的特征,而较小的卷积核可更精确地捕获视频目标的运动细节,实现对目标多角度表征学习;其次,用计算效率更高、参数更少的内卷算子替代核较大的卷积算子,内卷通过高效的通道间交互避免了大量的不必要参数,在降低计算和存储成本的同时提升模型预测能力;最后,引入核为1×1的卷积进行线性映射,增强不同特征之间的联合表达,提高了模型参数的利用效率并增强了预测的鲁棒性。通过多个数据集对该模型进行全面测试,结果表明,相较于目前最优的SimVP(Simpler yet better Video Prediction)模型,所提模型在多项指标上均有显著提升。在移动手写数据集上,均方误差和平均绝对误差分别降低25.2%和17.4%;在北京交通数据集上,均方误差降低1.2%;在人体行为数据集上,结构相似性指数和峰值信噪比分别提高0.66%和0.47%。可见,所提模型在提升视频预测精度方面十分有效。
中图分类号:
朱俊宏, 赖俊宇, 甘炼强, 陈智勇, 刘华烁, 徐国尧. 结合内卷与卷积算子的视频预测模型[J]. 计算机应用, 2024, 44(1): 113-122.
Junhong ZHU, Junyu LAI, Lianqiang GAN, Zhiyong CHEN, Huashuo LIU, Guoyao XU. Video prediction model combining involution and convolution operators[J]. Journal of Computer Applications, 2024, 44(1): 113-122.
| 数据集 | 训练样本数 | 测试样本数 | 图像规格 | 输入帧数 | 输出帧数 | 
|---|---|---|---|---|---|
| 移动手写 | 10 000 | 10 000 | (1, 64, 64) | 10 | 10 | 
| 北京交通 | 19 627 | 1 334 | (2, 32, 32) | 4 | 4 | 
| 人体行为 | 5 200 | 3 167 | (1, 128, 128) | 10 | 20 | 
表1 不同数据集的实验参数配置
Tab. 1 Experiment parameter settings for different datasets
| 数据集 | 训练样本数 | 测试样本数 | 图像规格 | 输入帧数 | 输出帧数 | 
|---|---|---|---|---|---|
| 移动手写 | 10 000 | 10 000 | (1, 64, 64) | 10 | 10 | 
| 北京交通 | 19 627 | 1 334 | (2, 32, 32) | 4 | 4 | 
| 人体行为 | 5 200 | 3 167 | (1, 128, 128) | 10 | 20 | 
| 数据集 | Ne和Nd | He和Hd | 卷积核大小 | 
|---|---|---|---|
| 移动手写 | 4 | 64 | 3×3和5×5 | 
| 北京交通 | 3 | 64 | 3×3和5×5 | 
| 人体行为 | 3 | 32 | 3×3和5×5 | 
表2 不同数据集的模型编解码器超参数值
Tab. 2 Hyper-parameter values of encoder and decoder for different datasets
| 数据集 | Ne和Nd | He和Hd | 卷积核大小 | 
|---|---|---|---|
| 移动手写 | 4 | 64 | 3×3和5×5 | 
| 北京交通 | 3 | 64 | 3×3和5×5 | 
| 人体行为 | 3 | 32 | 3×3和5×5 | 
| 数据集 | ConvInvo模块个数Nc | 转换器隐藏层数量Hc | 卷积算子核大小 | 内卷算子核大小 | 
|---|---|---|---|---|
| 移动手写 | 4 | 512 | 3×3 | 11×11 | 
| 北京交通 | 3 | 128 | 3×3 | 11×11 | 
| 人体行为 | 4 | 256 | 3×3 | 11×11 | 
表3 不同数据集的转换器超参数值
Tab. 3 Hyper-parameter values of convertor for different datasets
| 数据集 | ConvInvo模块个数Nc | 转换器隐藏层数量Hc | 卷积算子核大小 | 内卷算子核大小 | 
|---|---|---|---|---|
| 移动手写 | 4 | 512 | 3×3 | 11×11 | 
| 北京交通 | 3 | 128 | 3×3 | 11×11 | 
| 人体行为 | 4 | 256 | 3×3 | 11×11 | 
| 模型 | MSE↓ | MAE↓ | SSIM↑ | 
|---|---|---|---|
| ConvLSTM[ | 103.3 | 182.9 | 0.707 | 
| MIM[ | 44.2 | 101.1 | 0.910 | 
| PredRNN[ | 56.8 | 126.1 | 0.867 | 
| CausalLSTM[ | 46.5 | 106.8 | 0.898 | 
| E3D-LSTM[ | 41.3 | 86.4 | 0.910 | 
| SimVP[ | 23.8 | 68.9 | 0.948 | 
| PhyDNet[ | 24.4 | 70.3 | 0.947 | 
| CICO-VP | 17.8 | 56.9 | 0.961 | 
表4 各模型在移动手写数据集性能比较
Tab. 4 Performance comparison of different models on Moving MNIST dataset
| 模型 | MSE↓ | MAE↓ | SSIM↑ | 
|---|---|---|---|
| ConvLSTM[ | 103.3 | 182.9 | 0.707 | 
| MIM[ | 44.2 | 101.1 | 0.910 | 
| PredRNN[ | 56.8 | 126.1 | 0.867 | 
| CausalLSTM[ | 46.5 | 106.8 | 0.898 | 
| E3D-LSTM[ | 41.3 | 86.4 | 0.910 | 
| SimVP[ | 23.8 | 68.9 | 0.948 | 
| PhyDNet[ | 24.4 | 70.3 | 0.947 | 
| CICO-VP | 17.8 | 56.9 | 0.961 | 
| 模型 | MSE×100↓ | MAE↓ | SSIM↑ | 
|---|---|---|---|
| ConvLSTM[ | 48.5 | 17.7 | 0.978 | 
| MIM[ | 42.9 | 16.6 | 0.971 | 
| PredRNN[ | 46.4 | 17.1 | 0.971 | 
| CausalLSTM[ | 44.8 | 16.9 | 0.977 | 
| E3D-LSTM[ | 43.2 | 16.9 | 0.979 | 
| SimVP[ | 41.4 | 16.2 | 0.982 | 
| PhyDNet[ | 41.9 | 16.2 | 0.982 | 
| CICO-VP | 40.9 | 16.2 | 0.982 | 
表5 各模型在北京交通数据集性能比较
Tab. 5 Performance comparison of different models on Traffic Beijing dataset
| 模型 | MSE×100↓ | MAE↓ | SSIM↑ | 
|---|---|---|---|
| ConvLSTM[ | 48.5 | 17.7 | 0.978 | 
| MIM[ | 42.9 | 16.6 | 0.971 | 
| PredRNN[ | 46.4 | 17.1 | 0.971 | 
| CausalLSTM[ | 44.8 | 16.9 | 0.977 | 
| E3D-LSTM[ | 43.2 | 16.9 | 0.979 | 
| SimVP[ | 41.4 | 16.2 | 0.982 | 
| PhyDNet[ | 41.9 | 16.2 | 0.982 | 
| CICO-VP | 40.9 | 16.2 | 0.982 | 
| 模型 | SSIM↑ | PSNR/dB↑ | 模型 | SSIM↑ | PSNR/dB↑ | 
|---|---|---|---|---|---|
| ConvLSTM[ | 0.712 | 23.58 | SVAP-VAE[ | 0.852 | 27.77 | 
| SV2P[ | 0.838 | 27.79 | VPN[ | 0.746 | 23.76 | 
| PredRNN[ | 0.839 | 27.55 | DFN[ | 0.794 | 27.26 | 
| PredRNN++[ | 0.865 | 28.47 | fRNN[ | 0.771 | 26.12 | 
| E3d-LSTM[ | 0.879 | 29.31 | Znet[ | 0.817 | 27.50 | 
| SimVP[ | 0.905 | 33.72 | VarNet[ | 0.843 | 28.48 | 
| MCnet[ | 0.804 | 25.95 | STMFANet[ | 0.893 | 29.85 | 
| SAVP[ | 0.746 | 25.38 | CICO-VP | 0.911 | 33.88 | 
表6 人体行为数据集实验结果
Tab. 6 Experiment results of KTH dataset
| 模型 | SSIM↑ | PSNR/dB↑ | 模型 | SSIM↑ | PSNR/dB↑ | 
|---|---|---|---|---|---|
| ConvLSTM[ | 0.712 | 23.58 | SVAP-VAE[ | 0.852 | 27.77 | 
| SV2P[ | 0.838 | 27.79 | VPN[ | 0.746 | 23.76 | 
| PredRNN[ | 0.839 | 27.55 | DFN[ | 0.794 | 27.26 | 
| PredRNN++[ | 0.865 | 28.47 | fRNN[ | 0.771 | 26.12 | 
| E3d-LSTM[ | 0.879 | 29.31 | Znet[ | 0.817 | 27.50 | 
| SimVP[ | 0.905 | 33.72 | VarNet[ | 0.843 | 28.48 | 
| MCnet[ | 0.804 | 25.95 | STMFANet[ | 0.893 | 29.85 | 
| SAVP[ | 0.746 | 25.38 | CICO-VP | 0.911 | 33.88 | 
| 1 | CHANG Z, ZHANG X, WANG S, et al. STRPM: A spatiotemporal residual predictive model for high-resolution video prediction [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13926-13935. 10.1109/cvpr52688.2022.01356 | 
| 2 | WU H, YAO Z, WANG J, et al. MotionRNN: A flexible model for video prediction with spacetime-varying motions [C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 15435-15444. 10.1109/cvpr46437.2021.01518 | 
| 3 | LIU B, CHEN Y, LIU S, et al. Deep learning in latent space for video prediction and compression [C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 701-710. 10.1109/cvpr46437.2021.00076 | 
| 4 | SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 802-810. | 
| 5 | BABAEIZADEH M, FINN C, ERHAN D, et al. Stochastic variational video prediction [EB/OL]. [2023-01-05]. . | 
| 6 | MARTÍNEZ-GONZÁLEZ A, VILLAMIZAR M, CANÉVET O, et al. Efficient convolutional neural networks for depth-based multi-person pose estimation [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(11): 4207-4221. 10.1109/tcsvt.2019.2952779 | 
| 7 | KONG Y, FU Y. Human action recognition and prediction: A survey [J]. International Journal of Computer Vision, 2022, 130: 1366-1401. 10.1007/s11263-022-01594-9 | 
| 8 | WANG Y, ZHANG J, ZHU H, et al. Memory in memory: A predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9146-9154. 10.1109/cvpr.2019.00937 | 
| 9 | OPREA S, MARTINEZ-GONZALEZ P, GARCIA-GARCIA A, et al. A review on deep learning techniques for video prediction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2806-2826. 10.1109/tpami.2020.3045007 | 
| 10 | KINGMA D P, WELLING M. Auto-encoding variational Bayes [C/OL]// Proceedings of the 2nd International Conference on Learning Representations. [2023-01-05]. . 10.1561/2200000056 | 
| 11 | REZENDE D J, MOHAMED S, Stochastic WIERSTRA D.. backpropagation and approximate inference in deep generative models [C]// Proceedings of the 31st International Conference on Machine Learning. New York: JMLR.org, 2014: 1278-1286. | 
| 12 | KIPF T N, WELLING M. Variational graph auto-encoders [EB/OL]. [2023-01-05]. . | 
| 13 | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks [C/OL]// Proceedings of the 2016 International Conference on Machine Learning. [2023-01-05]. . 10.1109/aiar.2018.8769811 | 
| 14 | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs [C]// Proceedings of the 2017 International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2017: 5767-5777. | 
| 15 | KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation [C/OL]// Proceedings of the 2018 International Conference on Learning Representations. [2023-01-05]. . 10.1109/cvpr42600.2020.00813 | 
| 16 | BROCK A, DONAHUE J, SIMONYAN K. Large scale GAN training for high fidelity natural image synthesis [C/OL]// Proceedings of the 2019 International Conference on Learning Representations. [2023-01-05]. . | 
| 17 | KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4396-4405. 10.1109/cvpr.2019.00453 | 
| 18 | KARRAS T, AITTALA M, HELLSTEN J, et al. Training generative adversarial networks with limited data [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 12104-12114. | 
| 19 | KARRAS T, AITTALA M, LAINE S, et al. Alias-free generative adversarial networks [C/OL]// Proceedings of the 35th International Conference on Neural Information Processing Systems. [2023-01-05]. . 10.1007/978-3-030-93158-2_7 | 
| 20 | GU J T, LIU L J, WANG P, et al. StyleNeRF: A style-based 3d-aware generator for high-resolution image synthesis [C/OL]// Proceedings of the 2022 International Conference on Learning Representations. [2023-01-05]. . | 
| 21 | CHAN E R, MONTEIRO M, KELLNHOFER P, et al. pi-GAN: Periodic implicit generative adversarial networks for 3D-aware image synthesis [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 5795-5805. 10.1109/cvpr46437.2021.00574 | 
| 22 | WALKER J, MARINO K, GUPTA A, et al. The pose knows: Video forecasting by generating pose futures [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3352-3361. 10.1109/iccv.2017.361 | 
| 23 | HU Q Y, WAELCHLI A, PORTENIER T, et al. Video synthesis from a single image and motion stroke [EB/OL]. [2023-01-07]. . | 
| 24 | WU B, NAIR S, MARTÍN-MARTÍN R, et al. Greedy hierarchical variational autoencoders for large-scale video prediction [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2318-2328. 10.1109/cvpr46437.2021.00235 | 
| 25 | WEN S, LIU W, YANG Y, et al. Generating realistic videos from keyframes with concatenated GANs [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(8): 2337-2348. 10.1109/tcsvt.2018.2867934 | 
| 26 | MATHIEU M, COUPRIE C, LeCUN Y. Deep multi-scale video prediction beyond mean square error [C/OL]// Proceedings of the 2016 International Conference on Learning Representations. [2023-01-05]. . | 
| 27 | VONDRICK C, TORRALBA A. Generating the future with adversarial transformers [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2992-3000. 10.1109/cvpr.2017.319 | 
| 28 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780. 10.1162/neco.1997.9.8.1735 | 
| 29 | FINN C, GOODFELLOW I, LEVINE S. Unsupervised learning for physical interaction through video prediction [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2016: 64-72. | 
| 30 | WANG Y, LONG M, WANG J, et al. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 879-888. | 
| 31 | WANG Y, WU H, ZHANG J, et al. PredRNN: A recurrent neural network for spatiotemporal predictive learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 2208-2225. 10.1109/tpami.2022.3165153 | 
| 32 | WANG Y, GAO Z, LONG M, et al. PredRNN++: Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning [C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 5123-5132. | 
| 33 | LOTTER W, KREIMAN G, COX D. Deep predictive coding networks for video Prediction and unsupervised learning [C/OL]// Proceedings of the 2017 International Conference on Learning Representations. [2023-01-05]. . | 
| 34 | WANG Y, JIANG L, YANG M-H, et al. Eidetic 3D LSTM: A model for video prediction and beyond [C/OL]// Proceedings of the 2018 International Conference on Learning Representations. [2023-01-05]. . | 
| 35 | GAO Z, TAN C, WU L, et al. SimVP: Simpler yet better video prediction [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 3160-3170. 10.1109/cvpr52688.2022.00317 | 
| 36 | 朱俊宏,赖俊宇,刘华烁,等.一种基于多层卷积结构的视频帧预测方法: CN116567258A [P]. 2023-08-08. | 
| ZHU J H, LAI J Y, LIU H S, et al. A video frame prediction method based on multi-layer convolution structure: CN116567258A [P]. 2023-08-08. | |
| 37 | SRIVASTAVA N, MANSIMOV E, SALAKHUTDINOV R. Unsupervised learning of video representations using LSTMs [C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 843-852. 10.1109/iccv.2015.320 | 
| 38 | ZHANG J, ZHENG Y, QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction [C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 1655-1661. 10.1609/aaai.v31i1.10735 | 
| 39 | SCHULDT C, LAPTEV I, CAPUTO B. Recognizing human actions: a local SVM approach [C]// Proceedings of the 17th International Conference on Pattern Recognition. Piscataway: IEEE, 2004: 32-36. 10.1109/icpr.2004.1334462 | 
| 40 | VILLEGAS R, YANG J, HONG S, et al. Decomposing motion and content for natural video sequence prediction [C/OL]// Proceedings of the 2017 International Conference on Learning Representations. [2023-01-05]. . | 
| 41 | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. 10.1109/tip.2003.819861 | 
| 42 | LE GUEN V, THOME N. Disentangling physical dynamics from unknown factors for unsupervised video prediction [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11471-11481. 10.1109/cvpr42600.2020.01149 | 
| 43 | LEE A X, ZHANG R, EBERT F, et al. Stochastic adversarial video prediction [EB/OL]. [2023-01-07]. . | 
| 44 | KALCHBRENNER N, VAN DEN OORD A, SIMONYAN K, et al. Video pixel networks [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1771-1779. | 
| 45 | DE BRABANDERE B, JIA X, TUYTELAARS T, et al. Dynamic filter networks [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2016: 667-675. | 
| 46 | OLIU M, SELVA J, ESCALERA S, et al. Folded recurrent neural networks for future video prediction [C]// Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018: 745-761. 10.1007/978-3-030-01264-9_44 | 
| 47 | ZHANG J, WANG Y, LONG M, et al. Z-order recurrent neural networks for video prediction [C]// Proceedings of the 2019 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2019: 230-235. 10.1109/icme.2019.00048 | 
| 48 | JIN B, HU Y, ZENG Y, et al. Exploring variations for unsupervised video prediction [C]// Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2018: 5801-5806. 10.1109/iros.2018.8594264 | 
| 49 | JIN B, HU Y, TANG Q, et al. Exploring spatial-temporal multi-frequency analysis for high-fidelity and temporal-consistency video prediction [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4553-4562. 10.1109/cvpr42600.2020.00461 | 
| [1] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. | 
| [2] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. | 
| [3] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. | 
| [4] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. | 
| [5] | 李云, 王富铕, 井佩光, 王粟, 肖澳. 基于不确定度感知的帧关联短视频事件检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2903-2910. | 
| [6] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. | 
| [7] | 薛桂香, 王辉, 周卫峰, 刘瑜, 李岩. 基于知识图谱和时空扩散图卷积网络的港口交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2952-2957. | 
| [8] | 庞川林, 唐睿, 张睿智, 刘川, 刘佳, 岳士博. D2D通信系统中基于图卷积网络的分布式功率控制算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2855-2862. | 
| [9] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. | 
| [10] | 赵宇博, 张丽萍, 闫盛, 侯敏, 高茂. 基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2421-2429. | 
| [11] | 张春雪, 仇丽青, 孙承爱, 荆彩霞. 基于两阶段动态兴趣识别的购买行为预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2365-2371. | 
| [12] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. | 
| [13] | 顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625. | 
| [14] | 石乾宏, 杨燕, 江永全, 欧阳小草, 范武波, 陈强, 姜涛, 李媛. 面向空气质量预测的多粒度突变拟合网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2643-2650. | 
| [15] | 陈虹, 齐兵, 金海波, 武聪, 张立昂. 融合1D-CNN与BiGRU的类不平衡流量异常检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2493-2499. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||