《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (2): 654-662.DOI: 10.11772/j.issn.1001-9081.2023020191
所属专题: 前沿与综合应用
• 前沿与综合应用 • 上一篇
宋钰丹1,2, 王晶1,2,3(), 王雪徽1,2, 马朝阳1,2, 林友芳1,2,3
收稿日期:
2023-03-01
修回日期:
2023-05-04
接受日期:
2023-05-05
发布日期:
2024-02-22
出版日期:
2024-02-10
通讯作者:
王晶
作者简介:
宋钰丹(1997—),女,山西孝义人,硕士研究生,主要研究方向:睡眠生理信号分类、深度学习基金资助:
Yudan SONG1,2, Jing WANG1,2,3(), Xuehui WANG1,2, Zhaoyang MA1,2, Youfang LIN1,2,3
Received:
2023-03-01
Revised:
2023-05-04
Accepted:
2023-05-05
Online:
2024-02-22
Published:
2024-02-10
Contact:
Jing WANG
About author:
SONG Yudan, born in 1997, M. S. candidate. Her research interests include sleep physiological signal classification, deep learning.Supported by:
摘要:
针对睡眠阶段与睡眠呼吸暂停低通气之间相关性的问题,提出一种基于自适应多任务学习的睡眠生理时序分类方法。该方法利用单导脑电与心电检测睡眠分期和睡眠呼吸暂停低通气综合征(SAHS),构造双流时间依赖学习模块,在两个任务的联合监督下提取共享特征,设计自适应任务间关联性学习模块,利用通道注意力机制建模睡眠阶段和呼吸暂停低通气之间的相关性。在两个公开数据集上的实验结果表明,所提方法可以同时完成睡眠分期与SAHS检测。在UCD数据集上,所提方法睡眠分期准确率、宏F1分数(MF1)、受试者特性曲线下面积(AUC)与TinySleepNet相比分别提升了1.21个百分点、1.22个百分点和0.008 3,SAHS检测的宏F2分数(MF2)、受试者特性曲线下面积、召回率与6-layer CNN模型相比,分别提升了11.08个百分点、0.053 7和15.75个百分点,能检出更多患病片段。所提方法可应用于家庭睡眠监测或移动医疗中,实现高效、便捷的睡眠质量评估,辅助医生对SAHS进行初步诊断。
中图分类号:
宋钰丹, 王晶, 王雪徽, 马朝阳, 林友芳. 基于自适应多任务学习的睡眠生理时序分类方法[J]. 计算机应用, 2024, 44(2): 654-662.
Yudan SONG, Jing WANG, Xuehui WANG, Zhaoyang MA, Youfang LIN. Sleep physiological time series classification method based on adaptive multi-task learning[J]. Journal of Computer Applications, 2024, 44(2): 654-662.
数据集 | WAKE | N1 | N2 | N3 | REM | 总样本量 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
样本量 | 占比/% | 样本量 | 占比/% | 样本量 | 占比/% | 样本量 | 占比/% | 样本量 | 占比/% | ||
UCD | 4 659 | 25.36 | 3 400 | 18.51 | 6 984 | 38.02 | 673 | 3.66 | 3 014 | 16.41 | 18 370 |
ISRUC | 18 940 | 22.55 | 10 737 | 12.78 | 26 691 | 31.78 | 16 743 | 19.93 | 10 899 | 12.96 | 84 000 |
表1 数据集睡眠分期统计信息
Tab. 1 Statistics of datasets about sleep stages
数据集 | WAKE | N1 | N2 | N3 | REM | 总样本量 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
样本量 | 占比/% | 样本量 | 占比/% | 样本量 | 占比/% | 样本量 | 占比/% | 样本量 | 占比/% | ||
UCD | 4 659 | 25.36 | 3 400 | 18.51 | 6 984 | 38.02 | 673 | 3.66 | 3 014 | 16.41 | 18 370 |
ISRUC | 18 940 | 22.55 | 10 737 | 12.78 | 26 691 | 31.78 | 16 743 | 19.93 | 10 899 | 12.96 | 84 000 |
数据集 | 呼吸暂停低通气 | 正常 | 总样本量 | ||
---|---|---|---|---|---|
样本量 | 占比/% | 样本量 | 占比/% | ||
UCD | 3 876 | 21.10 | 14 854 | 80.86 | 18 370 |
ISRUC | 6 579 | 7.83 | 77 421 | 92.17 | 84 000 |
表2 数据集睡眠呼吸暂停低通气统计信息
Tab. 2 Statisticss of datasets about sleep apnea hypopnea
数据集 | 呼吸暂停低通气 | 正常 | 总样本量 | ||
---|---|---|---|---|---|
样本量 | 占比/% | 样本量 | 占比/% | ||
UCD | 3 876 | 21.10 | 14 854 | 80.86 | 18 370 |
ISRUC | 6 579 | 7.83 | 77 421 | 92.17 | 84 000 |
方法 | STL/MTL | 输入信号 | UCD数据集 | ISRUC数据集 | ||||
---|---|---|---|---|---|---|---|---|
ACC/% | MF1/% | ROC-AUC | ACC/% | MF1/% | ROC-AUC | |||
DeepSleepNet | STL | EEG | 74.36±0.69 | 73.54±0.37 | 0.932 6±0.003 0 | 72.71±1.15 | 70.32±1.33 | 0.932 1±0.003 7 |
12-layer CNN | STL | EEG | 74.46±0.55 | 73.49±0.72 | 0.929 7±0.005 7 | 79.27±0.22 | 77.38±0.26 | 0.947 5±0.000 8 |
TinySleepNet | STL | EEG | 75.96±0.28 | 74.98±0.26 | 0.936 9±0.003 8 | 79.09±0.30 | 77.57±0.22 | 0.953 0±0.001 2 |
AttnSleep | STL | EEG | 75.07±1.43 | 74.10±1.42 | 0.936 7±0.003 2 | 77.52±0.46 | 76.48±0.91 | 0.945 7±0.004 0 |
本文方法 | MTL | EEG+ECG | 77.17±0.46 | 76.20±0.34 | 0.945 2±0.002 1 | 79.39±0.32 | 77.34±0.42 | 0.952 9±0.000 6 |
表3 UCD数据集和ISRUC数据集上基准方法与本文方法的睡眠分期性能比较
Tab. 3 Sleep stage classification performance comparison between proposed method and baseline methods on UCD and ISRUC datasets
方法 | STL/MTL | 输入信号 | UCD数据集 | ISRUC数据集 | ||||
---|---|---|---|---|---|---|---|---|
ACC/% | MF1/% | ROC-AUC | ACC/% | MF1/% | ROC-AUC | |||
DeepSleepNet | STL | EEG | 74.36±0.69 | 73.54±0.37 | 0.932 6±0.003 0 | 72.71±1.15 | 70.32±1.33 | 0.932 1±0.003 7 |
12-layer CNN | STL | EEG | 74.46±0.55 | 73.49±0.72 | 0.929 7±0.005 7 | 79.27±0.22 | 77.38±0.26 | 0.947 5±0.000 8 |
TinySleepNet | STL | EEG | 75.96±0.28 | 74.98±0.26 | 0.936 9±0.003 8 | 79.09±0.30 | 77.57±0.22 | 0.953 0±0.001 2 |
AttnSleep | STL | EEG | 75.07±1.43 | 74.10±1.42 | 0.936 7±0.003 2 | 77.52±0.46 | 76.48±0.91 | 0.945 7±0.004 0 |
本文方法 | MTL | EEG+ECG | 77.17±0.46 | 76.20±0.34 | 0.945 2±0.002 1 | 79.39±0.32 | 77.34±0.42 | 0.952 9±0.000 6 |
方法 | STL/ MTL | 输入 信号 | UCD数据集 | ISRUC数据集 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ACC/% | MF2/% | ROC-AUC | Recall/% | ACC/% | MF2/% | ROC-AUC | Recall/% | |||
6-layer CNN | STL | ECG | 84.25±1.14 | 54.01±3.79 | 0.722 3±0.018 0 | 53.17±4.73 | 88.492±2.43 | 29.23±7.93 | 0.618 2±0.035 8 | 29.70±10.59 |
1D-ResNet | STL | ECG | 88.25±0.69 | 48.83±5.93 | 0.712 4±0.027 9 | 44.26±6.19 | 92.386±0.30 | 16.17±6.48 | 0.566 7±0.027 7 | 13.59±5.65 |
本文方法 | MTL | EEG+ ECG | 83.07±0.81 | 65.09±0.68 | 0.776 0±0.003 6 | 68.92±1.45 | 89.72±0.68 | 39.13±1.28 | 0.667 6±0.007 0 | 39.11±1.61 |
表4 UCD数据集ISRUC数据集上基准方法与本文方法的SAHS检测性能比较
Tab. 4 SAHS detection performance comparison between proposed method and baseline methods on UCD and ISRUC datasets
方法 | STL/ MTL | 输入 信号 | UCD数据集 | ISRUC数据集 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ACC/% | MF2/% | ROC-AUC | Recall/% | ACC/% | MF2/% | ROC-AUC | Recall/% | |||
6-layer CNN | STL | ECG | 84.25±1.14 | 54.01±3.79 | 0.722 3±0.018 0 | 53.17±4.73 | 88.492±2.43 | 29.23±7.93 | 0.618 2±0.035 8 | 29.70±10.59 |
1D-ResNet | STL | ECG | 88.25±0.69 | 48.83±5.93 | 0.712 4±0.027 9 | 44.26±6.19 | 92.386±0.30 | 16.17±6.48 | 0.566 7±0.027 7 | 13.59±5.65 |
本文方法 | MTL | EEG+ ECG | 83.07±0.81 | 65.09±0.68 | 0.776 0±0.003 6 | 68.92±1.45 | 89.72±0.68 | 39.13±1.28 | 0.667 6±0.007 0 | 39.11±1.61 |
方法 | STL/MTL | 输入信号 | 睡眠分期 | 睡眠呼吸暂停低通气检测 | |||||
---|---|---|---|---|---|---|---|---|---|
ACC/% | MF1/% | ROC-AUC | ACC/% | MF2/% | ROC-AUC | Recall/% | |||
A | STL | ECG | — | — | — | 85.81±0.50 | 60.63±1.67 | 0.762 0±0.010 8 | 60.53±2.13 |
B | STL | EEG+ECG | 75.94±0.60 | 74.55±0.54 | 0.942 0±0.002 0 | 85.07±0.87 | 63.75±1.47 | 0.773 8±0.009 8 | 65.17±1.42 |
C | MTL | EEG+ECG | 77.17±0.46 | 76.20±0.34 | 0.945 2±0.002 1 | 83.07±0.81 | 65.09±0.68 | 0.776 0±0.003 6 | 68.92±1.45 |
表5 UCD数据集上消融实验结果
Tab. 5 Ablation study results conducted on UCD dataset
方法 | STL/MTL | 输入信号 | 睡眠分期 | 睡眠呼吸暂停低通气检测 | |||||
---|---|---|---|---|---|---|---|---|---|
ACC/% | MF1/% | ROC-AUC | ACC/% | MF2/% | ROC-AUC | Recall/% | |||
A | STL | ECG | — | — | — | 85.81±0.50 | 60.63±1.67 | 0.762 0±0.010 8 | 60.53±2.13 |
B | STL | EEG+ECG | 75.94±0.60 | 74.55±0.54 | 0.942 0±0.002 0 | 85.07±0.87 | 63.75±1.47 | 0.773 8±0.009 8 | 65.17±1.42 |
C | MTL | EEG+ECG | 77.17±0.46 | 76.20±0.34 | 0.945 2±0.002 1 | 83.07±0.81 | 65.09±0.68 | 0.776 0±0.003 6 | 68.92±1.45 |
睡眠时期 | 条件概率 | 注意力权重 |
---|---|---|
WAKE | 0.035 3 | 0.383 9 |
N1 | 0.131 0 | 0.536 8 |
N2 | 0.123 1 | 0.641 4 |
N3 | 0.094 7 | 0.537 2 |
REM | 0.146 2 | 0.640 9 |
表6 UCD数据集上训练集中各时期发生睡眠呼吸暂停低通气的频率以及训练过程中最后五轮的平均权重
Tab. 6 Probability of sleep apnea hypopnea of each stage and average weight in last five rounds on training set in UCD dataset
睡眠时期 | 条件概率 | 注意力权重 |
---|---|---|
WAKE | 0.035 3 | 0.383 9 |
N1 | 0.131 0 | 0.536 8 |
N2 | 0.123 1 | 0.641 4 |
N3 | 0.094 7 | 0.537 2 |
REM | 0.146 2 | 0.640 9 |
方法 | STL/MTL | FLOPs/106 | 参数量/103 | 占用GPU显存/MB | 训练时间/min | |
---|---|---|---|---|---|---|
睡眠分期 STL基准方法 | DeepSleepNet | STL | 245.40 | 38 780.00 | 2 303 | 95 |
12-layer CNN | STL | 1 160.00 | 2 280.00 | 3 869 | 116 | |
TinySleepNet | STL | 144.41 | 1450.00 | 1 135 | 81 | |
AttnSleep | STL | 392.47 | 1 260.00 | 2 823 | 89 | |
SAHS检测 STL基准方法 | 6⁃layer CNN | STL | 328.94 | 64.87 | 3 113 | 146 |
1D ResNet | STL | 392.47 | 1 260.00 | 2 637 | 152 | |
MTL方法 | 本文方法 | MTL | 504.90 | 968.02 | 2 589 | 201 |
表7 本文MTL方法和STL基准方法的时间复杂度对比
Tab. 7 Time complexity comparison between proposed MTL method and baseline STL methods on UCD dataset
方法 | STL/MTL | FLOPs/106 | 参数量/103 | 占用GPU显存/MB | 训练时间/min | |
---|---|---|---|---|---|---|
睡眠分期 STL基准方法 | DeepSleepNet | STL | 245.40 | 38 780.00 | 2 303 | 95 |
12-layer CNN | STL | 1 160.00 | 2 280.00 | 3 869 | 116 | |
TinySleepNet | STL | 144.41 | 1450.00 | 1 135 | 81 | |
AttnSleep | STL | 392.47 | 1 260.00 | 2 823 | 89 | |
SAHS检测 STL基准方法 | 6⁃layer CNN | STL | 328.94 | 64.87 | 3 113 | 146 |
1D ResNet | STL | 392.47 | 1 260.00 | 2 637 | 152 | |
MTL方法 | 本文方法 | MTL | 504.90 | 968.02 | 2 589 | 201 |
1 | PEREZ-POZUELO I, ZHAI B, PALOTTI J, et al. The future of sleep health: a data-driven revolution in sleep science and medicine[J]. NPJ Digital Medicine, 2020, 3: 42. 10.1038/s41746-020-0244-4 |
2 | WOLPERT E A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects[J]. Archives of General Psychiatry, 1969, 20(2): 246-247. 10.1001/archpsyc.1969.01740140118016 |
3 | BERRY R B, BUDHIRAJA R, GOTTLIEB D J, et al. The American Academy of Sleep Medicine (AASM) manual for the scoring of sleep and associated events: rules, terminology and technical specifications[J]. Journal of Clinical Sleep Medicine, 2012, 8(5): 597-619. |
4 | ENGLEMAN H M, DOUGLAS N J. Sleep·4: Sleepiness, cognitive function, and quality of life in obstructive sleep apnoea/hypopnoea syndrome[J]. Thorax, 2004, 59(7): 618-622. 10.1136/thx.2003.015867 |
5 | SUBRAMANIAN S, HESSELBACHER S, MATTEWAL A, et al. Gender and age influence the effects of slow-wave sleep on respiration in patients with obstructive sleep apnea[J]. Sleep and Breathing, 2013, 17: 51-56. 10.1007/s11325-011-0644-4 |
6 | ALZOUBAIDI M, MOKHLESI B. Obstructive sleep apnea during REM sleep: clinical relevance and therapeutic implications[J]. Current Opinion in Pulmonary Medicine, 2016, 22 (6): 545-554. 10.1097/mcp.0000000000000319 |
7 | FINDLEY L J, WILHOIT S C, SURATT P M. Apnea duration and hypoxemia during REM sleep in patients with obstructive sleep apnea[J]. Chest, 1985, 87(4): 432-436. 10.1378/chest.87.4.432 |
8 | 范文兵, 刘雪峰, 赵艳阳. 基于单通道脑电信号的自动睡眠分期[J]. 计算机应用, 2017, 37(Z2):318-321. |
FAN W B, LIU X F, ZHAO Y Y, et al. Automatic sleep staging based on single channel electroencephalogram signal [J]. Journal of Computer Applications, 2017, 37 (Z2): 318-321. | |
9 | SUPRATAK A, DONG H, WU C, et al. DeepSleepNet: a model for automatic sleep stage scoring based on raw single-channel EEG[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(11): 1998-2008. 10.1109/tnsre.2017.2721116 |
10 | 金欢欢, 尹海波, 何玲娜. 基于生成少数类技术的深度自动睡眠分期模型[J]. 计算机应用, 2018, 38(9):2483-2488, 2506. 10.11772/j.issn.1001-9081.2018020440 |
JIN H H, YIN H B, HE L N. A deep automatic sleep staging model based on the generation of minority classes [J]. Journal of Computer Applications, 2018, 38(9): 2483-2488, 2506. 10.11772/j.issn.1001-9081.2018020440 | |
11 | JIA Z, LIN Y, WANG J, et al. GraphSleepNet: adaptive spatial-temporal graph convolutional networks for sleep stage classification[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2020: 1324-1330. 10.24963/ijcai.2020/184 |
12 | ELDELE E, CHEN Z, LIU C, et al. An attention-based deep learning approach for sleep stage classification with single-channel EEG[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 809-818. 10.1109/tnsre.2021.3076234 |
13 | ALMAZAYDEH L, ELLEITHY K, FAEZIPOUR M. Obstructive sleep apnea detection using SVM-based classification of ECG signal features[C]// Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, NJ: IEEE, 2012: 4938-4941. 10.1109/embc.2012.6347100 |
14 | WANG T, LU C, SHEN G, et al. Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network[J]. PeerJ, 2019, 7: e7731. 10.7717/peerj.7731 |
15 | SHARAN R V, BERKOVSKY S, XIONG H, et al. End-to-end sleep apnea detection using single-lead ECG signal and 1-D residual neural networks[J]. Journal of Medical and Biological Engineering, 2021, 41 : 758-766. 10.1007/s40846-021-00646-8 |
16 | LI Q, LI Q, LIU C, et al. Deep learning in the cross-time-frequency domain for sleep staging from a single lead electrocardiogram[J]. Physiological Measurement, 2018, 39(12): 124005. 10.1088/1361-6579/aaf339 |
17 | LIN R, LEE R-G, C-L TSENG, et al. A new approach for identifying sleep apnea syndrome using wavelet transform and neural networks[J]. Biomedical Engineering: Applications, Basis and Communications, 2006, 18(3): 138-143. 10.4015/s1016237206000233 |
18 | CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28: 41-75. 10.1023/a:1007379606734 |
19 | MISRA I, SHRIVASTAVA A, GUPTA A, et al. Cross-stitch networks for multi-task learning[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3994-4003. 10.1109/cvpr.2016.433 |
20 | MA J, ZHAO Z, YI X, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1930-1939. 10.1145/3219819.3220007 |
21 | CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7482-7491. 10.1109/cvpr.2018.00781 |
22 | TAYLOR S, JAQUES N, NOSAKHARE E, et al. Personalized multitask learning for predicting tomorrow’s mood, stress, and health[J]. IEEE Transactions on Affective Computing, 2017, 11(2): 200-213. |
23 | PANG G, PHAM N, BAKER E, et al. Deep multi-task learning for depression detection and prediction in longitudinal data [EB/OL]. (2020-12-05). . |
24 | BENDJOUDI I, VANDERHAEGEN F, HAMAD D, et al. Multi-label, multi-task CNN approach for context-based emotion recognition[J]. Information Fusion, 2021, 76: 422-428. 10.1016/j.inffus.2020.11.007 |
25 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
26 | CHEN Z, BADRINARAYANAN V, LEE C-Y, et al. GradNorm: gradient normalization for adaptive loss balancing in deep multitask networks[C]// Proceedings of the 35th International Conference on Machine Learning. New York: PMLR, 2017: 794-803. 10.48550/arXiv.1711.02257 |
27 | GOLDBERGER A L, AMARAL L A, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215-e220. 10.1161/01.cir.101.23.e215 |
28 | KHALIGHI S, SOUSA T, SANTOS J M, et al. ISRUC-Sleep: a comprehensive public dataset for sleep researchers[J]. Computer Methods and Programs in Biomedicine, 2016, 124: 180-192. 10.1016/j.cmpb.2015.10.013 |
29 | SUPRATAK A, GUO Y. TinySleepNet: an efficient deep learning model for sleep stage scoring based on raw single-channel EEG[C]// Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2020: 641-644. 10.1109/embc44109.2020.9176741 |
30 | URTNASAN E, J-U PARK, LEE K-J. Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram[J]. Physiological Measurement, 2018, 39(6): 065003. 10.1088/1361-6579/aac7b7 |
31 | PAPINI G B, FONSECA P, MARGARITO J, et al. On the generalizability of ECG-based obstructive sleep apnea monitoring: merits and limitations of the Apnea-ECG database[C]// Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2018: 6022-6025. 10.1109/embc.2018.8513660 |
32 | 阻塞性睡眠呼吸暂停低通气综合征诊治指南(基层版)写作组. 阻塞性睡眠呼吸暂停低通气综合征诊治指南(基层版)[J]. 中国呼吸与危重监护杂志, 2015, 14(4): 398-405. |
Writing Group for Diagnosis and Treatment Guidelines for Obstructive Sleep Apnea Hypoventilation Syndrome (Grassroots Edition). Guidelines for the diagnosis and treatment of obstructive sleep apnea hypopnea syndrome (grassroots version)[J]. Chinese Journal of Respiratory and Critical Care Medicine, 2015, 14 (4): 398-405. |
[1] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[2] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[3] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[4] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[5] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[6] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[7] | 顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625. |
[8] | 石乾宏, 杨燕, 江永全, 欧阳小草, 范武波, 陈强, 姜涛, 李媛. 面向空气质量预测的多粒度突变拟合网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2643-2650. |
[9] | 吴筝, 程志友, 汪真天, 汪传建, 王胜, 许辉. 基于深度学习的患者麻醉复苏过程中的头部运动幅度分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2258-2263. |
[10] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
[11] | 张郅, 李欣, 叶乃夫, 胡凯茜. 基于暗知识保护的模型窃取防御技术DKP[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2080-2086. |
[12] | 赵亦群, 张志禹, 董雪. 基于密集残差物理信息神经网络的各向异性旅行时计算方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2310-2318. |
[13] | 徐松, 张文博, 王一帆. 基于时空信息的轻量视频显著性目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2192-2199. |
[14] | 孙逊, 冯睿锋, 陈彦如. 基于深度与实例分割融合的单目3D目标检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2208-2215. |
[15] | 赵雅娟, 孟繁军, 徐行健. 在线教育学习者知识追踪综述[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1683-1698. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||