《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (2): 436-443.DOI: 10.11772/j.issn.1001-9081.2024020163
• 数据科学与技术 • 上一篇
收稿日期:
2024-02-19
修回日期:
2024-03-24
接受日期:
2024-04-01
发布日期:
2024-06-04
出版日期:
2025-02-10
通讯作者:
陈黎飞
作者简介:
张倩婷(1995—),女,福建惠安人,硕士研究生,主要研究方向:数据挖掘、机器学习基金资助:
Qianting ZHANG1,2, Liying HU1,2, Lifei CHEN1,2,3()
Received:
2024-02-19
Revised:
2024-03-24
Accepted:
2024-04-01
Online:
2024-06-04
Published:
2025-02-10
Contact:
Lifei CHEN
About author:
ZHANG Qianting, born in 1995, M. S. candidate. Her research interests include data mining, machine learning.Supported by:
摘要:
鉴于时间序列数据在各个领域的广泛应用,对这些数据的可辨识特征的挖掘和表征至关重要。受数据采集环境和采集设备的影响,许多应用领域的时序数据都存在高噪声的特点,这对数据表征方法的鲁棒性提出了很高的要求。因此,提出一种时间序列的鲁棒形态表征方法(TRS)。该方法采用关键形态(KS)的特征提取方法,在保留可解释性的同时减少噪声的影响,并通过位置距离度量对时间序列进行表征,从而提高整个方法的鲁棒性。在受噪声干扰的时间序列数据上的实验结果表明,TRS所提取的特征在分类上显著均优于现有的方法,与同样基于形态模式提取特征的深度学习模型——对抗动态Shapelet网络(ADSN)相比,平均正确率高出2.1个百分点。可见,TRS提取的特征集更有代表性和鲁棒性。
中图分类号:
张倩婷, 胡丽莹, 陈黎飞. 时间序列的鲁棒形态表征方法[J]. 计算机应用, 2025, 45(2): 436-443.
Qianting ZHANG, Liying HU, Lifei CHEN. Robust shapelet representation method for time series[J]. Journal of Computer Applications, 2025, 45(2): 436-443.
方法 | 时间复杂度 | 方法 | 时间复杂度 |
---|---|---|---|
DWT | O(n2m3) | FS | O(nm2) |
ST | O(n2m4) | BSPCOVER | O(In2m) |
LTS | O(Inm2) | TRS | O(nm2) |
表1 时间复杂度分析
Tab. 1 Time complexity analysis
方法 | 时间复杂度 | 方法 | 时间复杂度 |
---|---|---|---|
DWT | O(n2m3) | FS | O(nm2) |
ST | O(n2m4) | BSPCOVER | O(In2m) |
LTS | O(Inm2) | TRS | O(nm2) |
场景数据 | 样本数 | 类别数 | 长度 | |
---|---|---|---|---|
训练集 | 测试集 | |||
ECG200 | 100 | 100 | 2 | 96 |
ECG5000 | 500 | 4 500 | 5 | 140 |
ECGFiveDays | 23 | 861 | 2 | 136 |
NonInvasiveFatalECGThorax1 | 1 800 | 1 965 | 42 | 750 |
NonInvasiveFatalECGThorax2 | 1 800 | 1 965 | 42 | 750 |
TwoLeadECG | 613 | 370 | 2 | 235 |
CinECGTorso | 40 | 1 380 | 4 | 1 639 |
Lightning7 | 70 | 73 | 7 | 319 |
MoteStrain | 20 | 1 252 | 2 | 84 |
Phoneme | 214 | 1 896 | 39 | 1 024 |
Plane | 105 | 105 | 7 | 144 |
SonyAIBORobotSurface1 | 20 | 601 | 2 | 70 |
SonyAIBORobotSurface2 | 27 | 953 | 2 | 65 |
Wafer | 100 | 100 | 4 | 275 |
表2 数据集的详细信息
Tab. 2 Details of datasets
场景数据 | 样本数 | 类别数 | 长度 | |
---|---|---|---|---|
训练集 | 测试集 | |||
ECG200 | 100 | 100 | 2 | 96 |
ECG5000 | 500 | 4 500 | 5 | 140 |
ECGFiveDays | 23 | 861 | 2 | 136 |
NonInvasiveFatalECGThorax1 | 1 800 | 1 965 | 42 | 750 |
NonInvasiveFatalECGThorax2 | 1 800 | 1 965 | 42 | 750 |
TwoLeadECG | 613 | 370 | 2 | 235 |
CinECGTorso | 40 | 1 380 | 4 | 1 639 |
Lightning7 | 70 | 73 | 7 | 319 |
MoteStrain | 20 | 1 252 | 2 | 84 |
Phoneme | 214 | 1 896 | 39 | 1 024 |
Plane | 105 | 105 | 7 | 144 |
SonyAIBORobotSurface1 | 20 | 601 | 2 | 70 |
SonyAIBORobotSurface2 | 27 | 953 | 2 | 65 |
Wafer | 100 | 100 | 4 | 275 |
场景数据 | LS | TSN | ADSN | BSPCOVER | InceptionTime | MiniRocket | TRS |
---|---|---|---|---|---|---|---|
ECG200 | 0.880 | 0.900 | 0.920 | 0.920 | 0.910 | 0.910 | 0.950 |
ECG5000 | 0.932 | 0.948 | 0.947 | 0.944 | 0.942 | 0.945 | 0.951 |
ECGFiveDays | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
NonInvasiveFatalECGThorax1 | 0.259 | 0.877 | 0.902 | 0.915 | 0.958 | 0.955 | 0.947 |
NonInvasiveFatalECGThorax2 | 0.770 | 0.902 | 0.917 | 0.938 | 0.959 | 0.969 | 0.969 |
TwoLeadECG | 0.996 | 0.972 | 0.986 | 0.997 | 0.996 | 0.998 | 0.997 |
CinECGTorso | 0.870 | 0.975 | 0.976 | 0.965 | 0.853 | 0.870 | 0.901 |
Lightning7 | 0.726 | 0.644 | 0.767 | 0.808 | 0.795 | 0.795 | 0.795 |
MoteStrain | 0.883 | 0.908 | 0.906 | 0.911 | 0.894 | 0.931 | 0.942 |
Phoneme | 0.218 | 0.216 | 0.227 | 0.207 | 0.337 | 0.292 | 0.361 |
Plane | 1.000 | 1.000 | 1.000 | 1.000 | 0.942 | 1.000 | 1.000 |
SonyAIBORobotSurface1 | 0.810 | 0.857 | 0.915 | 0.883 | 0.879 | 0.890 | 0.948 |
SonyAIBORobotSurface2 | 0.875 | 0.909 | 0.940 | 0.935 | 0.952 | 0.918 | 0.942 |
Wafer | 0.996 | 0.999 | 0.999 | 0.998 | 0.999 | 0.999 | 1.000 |
Average Accuracy | 0.801 | 0.865 | 0.886 | 0.887 | 0.887 | 0.891 | 0.907 |
Average Rank | 5.571 | 4.429 | 3.214 | 3.357 | 3.643 | 2.571 | 1.571 |
Wilcoxon Test p value | 0.002 | 0.019 | 0.028 | 0.075 | 0.025 | 0.025 | — |
表3 TRS与多种时间序列模型的特征对比
Tab. 3 Comparison of characteristics of TRS and various time series models
场景数据 | LS | TSN | ADSN | BSPCOVER | InceptionTime | MiniRocket | TRS |
---|---|---|---|---|---|---|---|
ECG200 | 0.880 | 0.900 | 0.920 | 0.920 | 0.910 | 0.910 | 0.950 |
ECG5000 | 0.932 | 0.948 | 0.947 | 0.944 | 0.942 | 0.945 | 0.951 |
ECGFiveDays | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
NonInvasiveFatalECGThorax1 | 0.259 | 0.877 | 0.902 | 0.915 | 0.958 | 0.955 | 0.947 |
NonInvasiveFatalECGThorax2 | 0.770 | 0.902 | 0.917 | 0.938 | 0.959 | 0.969 | 0.969 |
TwoLeadECG | 0.996 | 0.972 | 0.986 | 0.997 | 0.996 | 0.998 | 0.997 |
CinECGTorso | 0.870 | 0.975 | 0.976 | 0.965 | 0.853 | 0.870 | 0.901 |
Lightning7 | 0.726 | 0.644 | 0.767 | 0.808 | 0.795 | 0.795 | 0.795 |
MoteStrain | 0.883 | 0.908 | 0.906 | 0.911 | 0.894 | 0.931 | 0.942 |
Phoneme | 0.218 | 0.216 | 0.227 | 0.207 | 0.337 | 0.292 | 0.361 |
Plane | 1.000 | 1.000 | 1.000 | 1.000 | 0.942 | 1.000 | 1.000 |
SonyAIBORobotSurface1 | 0.810 | 0.857 | 0.915 | 0.883 | 0.879 | 0.890 | 0.948 |
SonyAIBORobotSurface2 | 0.875 | 0.909 | 0.940 | 0.935 | 0.952 | 0.918 | 0.942 |
Wafer | 0.996 | 0.999 | 0.999 | 0.998 | 0.999 | 0.999 | 1.000 |
Average Accuracy | 0.801 | 0.865 | 0.886 | 0.887 | 0.887 | 0.891 | 0.907 |
Average Rank | 5.571 | 4.429 | 3.214 | 3.357 | 3.643 | 2.571 | 1.571 |
Wilcoxon Test p value | 0.002 | 0.019 | 0.028 | 0.075 | 0.025 | 0.025 | — |
场景数据 | ST | TRS | ||
---|---|---|---|---|
RF | SVM(Linear) | RF | SVM(Linear) | |
ECG200 | 0.830 | 0.810 | 0.950 | 0.890 |
ECG5000 | 0.944 | 0.932 | 0.951 | 0.948 |
ECGFiveDays | 0.933 | 0.990 | 1.000 | 1.000 |
NonInvasiveFatalECGThorax1 | 0.950 | 0.877 | 0.955 | 0.958 |
NonInvasiveFatalECGThorax2 | 0.951 | 0.938 | 0.969 | 0.967 |
TwoLeadECG | 0.961 | 0.993 | 0.978 | 0.972 |
CinECGTorso | 0.859 | 0.901 | 0.954 | 0.901 |
Lightning7 | 0.726 | 0.712 | 0.767 | 0.780 |
MoteStrain | 0.846 | 0.886 | 0.939 | 0.907 |
Phoneme | 0.321 | 0.321 | 0.361 | 0.369 |
Plane | 1.000 | 1.000 | 1.000 | 1.000 |
SonyAIBORobotSurface1 | 0.851 | 0.867 | 0.965 | 0.965 |
SonyAIBORobotSurface2 | 0.934 | 0.937 | 0.929 | 0.938 |
Wafer | 1.000 | 1.000 | 0.999 | 0.999 |
Average Accuracy | 0.865 | 0.869 | 0.908 | 0.900 |
Average Rank | 2.920 | 2.643 | 1.780 | 1.780 |
Wilcoxon Test p value | 0.003 | 0.012 | — | — |
表4 TRS与ST的特征对比
Tab. 4 Comparison of characteristics of TRS and ST
场景数据 | ST | TRS | ||
---|---|---|---|---|
RF | SVM(Linear) | RF | SVM(Linear) | |
ECG200 | 0.830 | 0.810 | 0.950 | 0.890 |
ECG5000 | 0.944 | 0.932 | 0.951 | 0.948 |
ECGFiveDays | 0.933 | 0.990 | 1.000 | 1.000 |
NonInvasiveFatalECGThorax1 | 0.950 | 0.877 | 0.955 | 0.958 |
NonInvasiveFatalECGThorax2 | 0.951 | 0.938 | 0.969 | 0.967 |
TwoLeadECG | 0.961 | 0.993 | 0.978 | 0.972 |
CinECGTorso | 0.859 | 0.901 | 0.954 | 0.901 |
Lightning7 | 0.726 | 0.712 | 0.767 | 0.780 |
MoteStrain | 0.846 | 0.886 | 0.939 | 0.907 |
Phoneme | 0.321 | 0.321 | 0.361 | 0.369 |
Plane | 1.000 | 1.000 | 1.000 | 1.000 |
SonyAIBORobotSurface1 | 0.851 | 0.867 | 0.965 | 0.965 |
SonyAIBORobotSurface2 | 0.934 | 0.937 | 0.929 | 0.938 |
Wafer | 1.000 | 1.000 | 0.999 | 0.999 |
Average Accuracy | 0.865 | 0.869 | 0.908 | 0.900 |
Average Rank | 2.920 | 2.643 | 1.780 | 1.780 |
Wilcoxon Test p value | 0.003 | 0.012 | — | — |
场景数据 | FS | TRS |
---|---|---|
ECG200 | 0.810 | 0.900 |
ECG5000 | 0.923 | 0.947 |
ECGFiveDays | 0.998 | 1.000 |
NonInvasiveFatalECGThorax1 | 0.710 | 0.902 |
NonInvasiveFatalECGThorax2 | 0.754 | 0.938 |
TwoLeadECG | 0.924 | 0.986 |
CinECGTorso | 0.859 | 0.901 |
Lightning7 | 0.644 | 0.781 |
MoteStrain | 0.777 | 0.908 |
Phoneme | 0.174 | 0.368 |
Plane | 1.000 | 1.000 |
SonyAIBORobotSurface1 | 0.686 | 0.945 |
SonyAIBORobotSurface2 | 0.790 | 0.935 |
Wafer | 0.997 | 0.999 |
Average Accuracy | 0.789 | 0.894 |
Average Rank | 1.929 | 1.000 |
Wilcoxon Test p value | 0.001 | — |
表5 TRS与FS的特征对比
Tab. 5 Comparison of characteristics of TRS and FS
场景数据 | FS | TRS |
---|---|---|
ECG200 | 0.810 | 0.900 |
ECG5000 | 0.923 | 0.947 |
ECGFiveDays | 0.998 | 1.000 |
NonInvasiveFatalECGThorax1 | 0.710 | 0.902 |
NonInvasiveFatalECGThorax2 | 0.754 | 0.938 |
TwoLeadECG | 0.924 | 0.986 |
CinECGTorso | 0.859 | 0.901 |
Lightning7 | 0.644 | 0.781 |
MoteStrain | 0.777 | 0.908 |
Phoneme | 0.174 | 0.368 |
Plane | 1.000 | 1.000 |
SonyAIBORobotSurface1 | 0.686 | 0.945 |
SonyAIBORobotSurface2 | 0.790 | 0.935 |
Wafer | 0.997 | 0.999 |
Average Accuracy | 0.789 | 0.894 |
Average Rank | 1.929 | 1.000 |
Wilcoxon Test p value | 0.001 | — |
场景数据 | DTW | TRS |
---|---|---|
ECG200 | 0.880 | 0.900 |
ECG5000 | 0.925 | 0.943 |
ECGFiveDays | 0.797 | 0.941 |
NonInvasiveFatalECGThorax1 | 0.829 | 0.955 |
NonInvasiveFatalECGThorax2 | 0.865 | 0.959 |
TwoLeadECG | 0.868 | 0.972 |
CinECGTorso | 0.930 | 0.901 |
Lightning7 | 0.726 | 0.726 |
MoteStrain | 0.835 | 0.754 |
Phoneme | 0.227 | 0.237 |
Plane | 1.000 | 1.000 |
SonyAIBORobotSurface1 | 0.695 | 0.883 |
SonyAIBORobotSurface2 | 0.859 | 0.918 |
Wafer | 0.996 | 0.999 |
Average Accuracy | 0.817 | 0.863 |
Average Rank | 1.714 | 1.143 |
Wilcoxon Test p value | 0.034 | — |
表6 TRS与DTW的特征对比
Tab. 6 Comparison of characteristics of TRS and DTW
场景数据 | DTW | TRS |
---|---|---|
ECG200 | 0.880 | 0.900 |
ECG5000 | 0.925 | 0.943 |
ECGFiveDays | 0.797 | 0.941 |
NonInvasiveFatalECGThorax1 | 0.829 | 0.955 |
NonInvasiveFatalECGThorax2 | 0.865 | 0.959 |
TwoLeadECG | 0.868 | 0.972 |
CinECGTorso | 0.930 | 0.901 |
Lightning7 | 0.726 | 0.726 |
MoteStrain | 0.835 | 0.754 |
Phoneme | 0.227 | 0.237 |
Plane | 1.000 | 1.000 |
SonyAIBORobotSurface1 | 0.695 | 0.883 |
SonyAIBORobotSurface2 | 0.859 | 0.918 |
Wafer | 0.996 | 0.999 |
Average Accuracy | 0.817 | 0.863 |
Average Rank | 1.714 | 1.143 |
Wilcoxon Test p value | 0.034 | — |
数据集 | 无处理 | 关键点剪枝 | 关键点剪枝&剪枝 |
---|---|---|---|
ECG200 | 0.695±0.012 | 0.878±0.006 | 0.934±0.020 |
ECG5000 | 0.844±0.030 | 0.922±0.005 | 0.948±0.003 |
ECGFiveDays | 0.813±0.001 | 0.998±0.000 | 1.000±0.000 |
NonInvasiveFatalECGThorax1 | 0.853±0.002 | 0.931±0.008 | 0.943±0.013 |
NonInvasiveFatalECGThorax2 | 0.772±0.002 | 0.924±0.012 | 0.961±0.010 |
TwoLeadECG | 0.893±0.004 | 0.951±0.004 | 0.996±0.001 |
CinECGTorso | 0.724±0.001 | 0.860±0.022 | 0.901±0.033 |
表7 关键点剪枝和AMP剪枝对关键形态提取的影响
Tab. 7 Influence of key point pruning and AMP pruning on Key-Shapelet extraction
数据集 | 无处理 | 关键点剪枝 | 关键点剪枝&剪枝 |
---|---|---|---|
ECG200 | 0.695±0.012 | 0.878±0.006 | 0.934±0.020 |
ECG5000 | 0.844±0.030 | 0.922±0.005 | 0.948±0.003 |
ECGFiveDays | 0.813±0.001 | 0.998±0.000 | 1.000±0.000 |
NonInvasiveFatalECGThorax1 | 0.853±0.002 | 0.931±0.008 | 0.943±0.013 |
NonInvasiveFatalECGThorax2 | 0.772±0.002 | 0.924±0.012 | 0.961±0.010 |
TwoLeadECG | 0.893±0.004 | 0.951±0.004 | 0.996±0.001 |
CinECGTorso | 0.724±0.001 | 0.860±0.022 | 0.901±0.033 |
数据集 | TRS | ST | |
---|---|---|---|
带位置信息 关键形态表征 | 不带位置信息关键形态表征 | ||
ECG200 | 0.950 | 0.890 | 0.830 |
ECG5000 | 0.951 | 0.928 | 0.944 |
ECGFiveDays | 1.000 | 0.954 | 0.933 |
NonInvasiveFatalECGThorax1 | 0.955 | 0.952 | 0.950 |
NonInvasiveFatalECGThorax2 | 0.969 | 0.956 | 0.951 |
TwoLeadECG | 0.997 | 0.977 | 0.961 |
CinECGTorso | 0.901 | 0.900 | 0.859 |
表8 关键位置形态表征的消融实验
Tab. 8 Ablation experiment results of key position Shapelets representation
数据集 | TRS | ST | |
---|---|---|---|
带位置信息 关键形态表征 | 不带位置信息关键形态表征 | ||
ECG200 | 0.950 | 0.890 | 0.830 |
ECG5000 | 0.951 | 0.928 | 0.944 |
ECGFiveDays | 1.000 | 0.954 | 0.933 |
NonInvasiveFatalECGThorax1 | 0.955 | 0.952 | 0.950 |
NonInvasiveFatalECGThorax2 | 0.969 | 0.956 | 0.951 |
TwoLeadECG | 0.997 | 0.977 | 0.961 |
CinECGTorso | 0.901 | 0.900 | 0.859 |
1 | 魏池璇,王志海,原继东,等. 时间序列可变尺度的时频特征求解及其分类[J]. 软件学报, 2022, 33(12): 4411-4428. |
WEI C X, WANG Z H, YUAN J D, et al. Time series pattern discovery and classification with variable scales in time-frequency domains[J]. Journal of Software, 2022, 33(12): 4411-4428. | |
2 | WANG J, CHEN Y, HAO S, et al. Deep learning for sensor-based activity recognition: a survey[J]. Pattern Recognition Letters, 2019, 119: 3-11. |
3 | RAJKOMAR A, OREN E, CHEN K, et al. Scalable and accurate deep learning with electronic health records[J]. npj Digital Medicine, 2018, 1: No.18. |
4 | 任守纲,张景旭,顾兴健,等. 时间序列特征提取方法研究综述[J]. 小型微型计算机系统, 2021, 42(2): 271-278. |
REN S G, ZHANG J X, GU X J, et al. Overview of feature extraction algorithms for time series[J]. Journal of Chinese Computer Systems, 2021, 42(2): 271-278. | |
5 | 罗伟. 基于时间序列表征的检索与分类研究[D]. 济南:山东大学, 2022. |
LUO W. Research on time series representation based retrieval and classification[D]. Jinan: Shandong University, 2022. | |
6 | DILMI M D, BARTHÈS L, MALLET C, et al. Iterative Multiscale Dynamic Time Warping (IMs-DTW): a tool for rainfall time series comparison[J]. International Journal of Data Science Analytics, 2020, 10(1): 65-79. |
7 | PETITJEAN F, FORESTIER G, WEBB G I, et al. Dynamic time warping averaging of time series allows faster and more accurate classification[C]// Proceedings of the 2014 IEEE International Conference on Data Mining. Piscataway: IEEE, 2014: 470-479. |
8 | ISMAIL FAWAZ H, LUCAS B, FORESTIER G, et al. InceptionTime: finding AlexNet for time series classification[J]. Data Mining and Knowledge Discovery, 2020, 34(6): 1936-1962. |
9 | DEMPSTER A, PETITJEAN F, WEBB G I. ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels[J]. Data Mining and Knowledge Discovery, 2020, 34: 1454-1495. |
10 | DEMPSTER A, SCHMIDT D F, WEBB G I. MiniRocket: a very fast (almost) deterministic transform for time series classification[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 248-257. |
11 | YE L, KEOGH E. Time series shapelets: a new primitive for data mining[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 947-956. |
12 | LINES J, DAVIS L M, HILLS J, et al. A shapelet transform for time series classification[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 289-297. |
13 | RAKTHANMANON T, KEOGH E. Fast shapelets: a scalable algorithm for discovering time series shapelets[C]// Proceedings of the 2013 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2013: 668-676. |
14 | GRABOCKA J, SCHILLING N, WISTUBA M, et al. Learning time-series shapelets[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 392-401. |
15 | ZHANG Z, ZHANG H, WEN Y, et al. Accelerating time series shapelets discovery with key points[C]// Proceedings of the 2016 Asia-Pacific Web Conference, LNCS 9932. Cham: Springer, 2016: 330-342. |
16 | JI C, ZHAO C, PAN L, et al. A fast shapelet discovery algorithm based on important data points[J]. International Journal of Web Services Research, 2017, 14(2): 67-80. |
17 | BOSTROM A, BAGNALL A. Binary shapelet transform for multiclass time series classification[C]// Proceedings of the 2015 Big Data Analytics and Knowledge Discovery, LNCS 9263. Cham: Springer, 2015: 257-269. |
18 | LI G, CHOI B, XU J, et al. Efficient shapelet discovery for time series classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(3): 1149-1163. |
19 | MA Q, ZHUANG W, COTTRELL G. Triple-shapelet networks for time series classification[C]// Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 1246-1251. |
20 | MA Q, ZHUANG W, LI S, et al. Adversarial dynamic shapelet networks[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 5069-5076. |
21 | YEH C C M, ZHU Y, ULANOVA L, et al. Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets[C]// Proceedings of the IEEE 16th International Conference on Data Mining. Piscataway: IEEE, 2016: 1317-1322. |
22 | 冯冠玺,马超,石小川,等. Kernel-Shapelets: 基于卷积网络的特征子序列学习方法[J]. 软件导刊, 2023, 22(4): 8-14. |
FENG G X, MA C, SHI X C, et al. Kernel-Shapelets: approach to learning Shapelets based on CNN[J]. Software Guide, 2023, 22(4): 8-14. | |
23 | DEMŠAR J. Statistical comparisons of classifiers over multiple datasets[J]. Journal of Machine Learning Research, 2006, 7: 1-30. |
[1] | 张翰林, 王俊陆, 宋宝燕. 融合衍生特征的时间序列事件分类方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 428-435. |
[2] | 胡健鹏, 张立臣. 面向多时间步风功率预测的深度时空网络模型[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 98-105. |
[3] | 张思齐, 张金俊, 王天一, 秦小林. 基于信号时态逻辑的深度时序事件检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 90-97. |
[4] | 任烈弘, 黄铝文, 田旭, 段飞. 基于DFT的频率敏感双分支Transformer多变量长时间序列预测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2739-2746. |
[5] | 范黎林, 曹富康, 王琬婷, 杨凯, 宋钊瑜. 基于需求模式自适应匹配的间歇性需求预测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2747-2755. |
[6] | 赵秦壮, 谭红叶. 基于自适应阈值学习的时序因果推断方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2660-2666. |
[7] | 韩祎珂, 徐彬, 张硕. 基于认知诊断的个性化习题推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2351-2356. |
[8] | 唐廷杰, 黄佳进, 秦进, 陆辉. 基于图共现增强多层感知机的会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2357-2364. |
[9] | 陈学斌, 任志强, 张宏扬. 联邦学习中的安全威胁与防御措施综述[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1663-1672. |
[10] | 王美, 苏雪松, 刘佳, 殷若南, 黄珊. 时频域多尺度交叉注意力融合的时间序列分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1842-1847. |
[11] | 袁子璇, 翁小清, 戈宁振. 基于正交局部保持映射和成本优化的多变量时间序列早期分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1832-1841. |
[12] | 徐泽鑫, 杨磊, 李康顺. 较短的长序列时间序列预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1824-1831. |
[13] | 吴锦富, 柳毅. 基于随机噪声和自适应步长的快速对抗训练方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1807-1815. |
[14] | 邹博士, 杨铭, 宗辰辰, 谢明昆, 黄圣君. 基于负学习的样本重加权鲁棒学习方法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1479-1484. |
[15] | 孟凡, 杨群力, 霍静, 王新宽. 基于边缘异常候选集的迭代式主动多元时序异常检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1458-1463. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||