《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (5): 1415-1423.DOI: 10.11772/j.issn.1001-9081.2024050743
• 2024年中国粒计算与知识发现学术会议 • 上一篇
收稿日期:
2024-06-04
修回日期:
2024-07-13
接受日期:
2024-07-23
发布日期:
2024-08-26
出版日期:
2025-05-10
通讯作者:
闵帆
作者简介:
陈昕(2000—),男,四川德阳人,硕士研究生,主要研究方向:形式概念分析、机器学习基金资助:
Xin CHEN1,2, Zhonghui LIU1,2, Fan MIN1,2,3()
Received:
2024-06-04
Revised:
2024-07-13
Accepted:
2024-07-23
Online:
2024-08-26
Published:
2025-05-10
Contact:
Fan MIN
About author:
CHEN Xin, born in 2000, M. S. candidate. His research interests include formal concept analysis, machine learning.Supported by:
摘要:
在形式概念分析(FCA)领域,概念集合的提出满足了真实环境的推荐需求;但目前概念集合生成方法缺乏有效的手段避免冗余属性的参与,这在一定程度上影响了概念生成的质量和效率,最终影响了推荐的效果。针对上述问题,提出形式背景属性约简算法(FCAR)、概念集构造算法(CSCA)以及基于概念集合的推荐算法(RACS)。首先,根据形式背景和评分矩阵设计属性兴趣度,并根据属性兴趣度阈值实现形式背景约简;其次,结合外延相似性与内涵兴趣度设计概念关键度作为启发信息,生成概念集合;最后,利用推荐置信度与推荐阈值得到概念集的推荐矩阵,从而针对目标用户实现个性化推荐。在11个数据集上对比了RACS与算法k最近邻(kNN)、基于项目的协同过滤(IBCF)、启发式概念集构造的组推荐(GRHC)、基于概念集的个性化推荐(CSPR)以及GreConD-kNN。实验结果表明,在6个常规数据集上,RACS在3个数据集上取得最高精确度和次高召回率,在4个数据集上取得最优F1值;特别是在3个较大规模的数据集上,与三种形式概念的推荐算法相比,RACS的推荐时间效率至少提升8倍。实验结果验证了RACS在推荐效果和推荐效率上的显著优势。
中图分类号:
陈昕, 刘忠慧, 闵帆. 约简形式背景下的概念集构造及其推荐应用[J]. 计算机应用, 2025, 45(5): 1415-1423.
Xin CHEN, Zhonghui LIU, Fan MIN. Concept set construction of reduced formal context and its recommendation application[J]. Journal of Computer Applications, 2025, 45(5): 1415-1423.
0 | 1 | 0 | 1 | 1 | 1 | 0 | |
0 | 1 | 1 | 0 | 1 | 0 | 0 | |
1 | 0 | 1 | 1 | 0 | 0 | 1 | |
1 | 0 | 0 | 1 | 0 | 1 | 0 | |
1 | 1 | 1 | 1 | 0 | 0 | 0 | |
1 | 1 | 0 | 0 | 1 | 0 | 0 | |
0 | 1 | 0 | 1 | 0 | 0 | 0 | |
1 | 0 | 1 | 0 | 1 | 0 | 0 | |
0 | 0 | 1 | 0 | 1 | 0 | 1 | |
1 | 0 | 1 | 0 | 0 | 1 | 0 |
表1 形式背景T
Tab. 1 Formal context T
0 | 1 | 0 | 1 | 1 | 1 | 0 | |
0 | 1 | 1 | 0 | 1 | 0 | 0 | |
1 | 0 | 1 | 1 | 0 | 0 | 1 | |
1 | 0 | 0 | 1 | 0 | 1 | 0 | |
1 | 1 | 1 | 1 | 0 | 0 | 0 | |
1 | 1 | 0 | 0 | 1 | 0 | 0 | |
0 | 1 | 0 | 1 | 0 | 0 | 0 | |
1 | 0 | 1 | 0 | 1 | 0 | 0 | |
0 | 0 | 1 | 0 | 1 | 0 | 1 | |
1 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 5 | 3 | 2 | 0 | |
0 | 4 | 3 | 0 | 3 | 0 | 0 | |
2 | 0 | 4 | 5 | 0 | 0 | 3 | |
1 | 0 | 0 | 4 | 0 | 5 | 0 | |
3 | 5 | 3 | 2 | 0 | 0 | 0 | |
5 | 2 | 0 | 0 | 4 | 0 | 0 | |
0 | 1 | 0 | 1 | 0 | 0 | 0 | |
2 | 0 | 1 | 0 | 4 | 0 | 0 | |
0 | 0 | 3 | 0 | 1 | 0 | 2 | |
4 | 0 | 5 | 0 | 0 | 3 | 0 |
表2 评分矩阵G
Tab. 2 Rating matrix G
0 | 1 | 0 | 5 | 3 | 2 | 0 | |
0 | 4 | 3 | 0 | 3 | 0 | 0 | |
2 | 0 | 4 | 5 | 0 | 0 | 3 | |
1 | 0 | 0 | 4 | 0 | 5 | 0 | |
3 | 5 | 3 | 2 | 0 | 0 | 0 | |
5 | 2 | 0 | 0 | 4 | 0 | 0 | |
0 | 1 | 0 | 1 | 0 | 0 | 0 | |
2 | 0 | 1 | 0 | 4 | 0 | 0 | |
0 | 0 | 3 | 0 | 1 | 0 | 2 | |
4 | 0 | 5 | 0 | 0 | 3 | 0 |
属性 | 兴趣度 | 属性 | 兴趣度 | 属性 | 兴趣度 | 属性 | 兴趣度 |
---|---|---|---|---|---|---|---|
0.783 3 | 0.816 7 | 0.716 7 | 0.416 7 | ||||
0.676 7 | 0.756 7 | 0.583 3 |
表3 属性兴趣度
Tab. 3 Attribute interest degree
属性 | 兴趣度 | 属性 | 兴趣度 | 属性 | 兴趣度 | 属性 | 兴趣度 |
---|---|---|---|---|---|---|---|
0.783 3 | 0.816 7 | 0.716 7 | 0.416 7 | ||||
0.676 7 | 0.756 7 | 0.583 3 |
用户 | 编号 | 概念 |
---|---|---|
表4 约简形式背景下的概念集合
Tab. 4 Concept sets in reduced formal context
用户 | 编号 | 概念 |
---|---|---|
待推荐属性 | 概念 | 推荐置信度 | 推荐次数 | 结果 |
---|---|---|---|---|
推荐 | ||||
推荐 | ||||
不推荐 | ||||
表5 u0的推荐结果
Tab. 5 Recommendation results for u0
待推荐属性 | 概念 | 推荐置信度 | 推荐次数 | 结果 |
---|---|---|---|---|
推荐 | ||||
推荐 | ||||
不推荐 | ||||
数据集 | 用户数 | 属性数 | 稀疏度 |
---|---|---|---|
movielens-100k | 943 | 1 682 | 0.063 0 |
movielens-1m | 6 040 | 3 952 | 0.041 9 |
ml-10m-s1 | 2 000 | 2 919 | 0.016 9 |
ml-10m-s2 | 3 659 | 1 002 | 0.235 2 |
ml-10m-s3 | 10 000 | 10 022 | 0.014 1 |
netflix-s1 | 2 000 | 1 200 | 0.090 3 |
netflix-s2 | 6 000 | 1 300 | 0.088 5 |
filmtrust | 1 508 | 2 071 | 0.011 4 |
jester-s1 | 2 000 | 100 | 0.247 1 |
jester-s2 | 12 000 | 140 | 0.244 3 |
douban-s | 2 618 | 5 000 | 0.012 5 |
表6 数据集信息
Tab. 6 Dataset information
数据集 | 用户数 | 属性数 | 稀疏度 |
---|---|---|---|
movielens-100k | 943 | 1 682 | 0.063 0 |
movielens-1m | 6 040 | 3 952 | 0.041 9 |
ml-10m-s1 | 2 000 | 2 919 | 0.016 9 |
ml-10m-s2 | 3 659 | 1 002 | 0.235 2 |
ml-10m-s3 | 10 000 | 10 022 | 0.014 1 |
netflix-s1 | 2 000 | 1 200 | 0.090 3 |
netflix-s2 | 6 000 | 1 300 | 0.088 5 |
filmtrust | 1 508 | 2 071 | 0.011 4 |
jester-s1 | 2 000 | 100 | 0.247 1 |
jester-s2 | 12 000 | 140 | 0.244 3 |
douban-s | 2 618 | 5 000 | 0.012 5 |
数据集 | 缺失 用户数 | 方法 | P | R | F1 |
---|---|---|---|---|---|
ml-10m-s1 | 6 | RACS | 0.233 6 | 0.174 8 | 0.200 0 |
RACS+kNN | 0.233 5 | 0.174 8 | 0.200 0 | ||
RACS+UBCF | 0.233 2 | 0.174 9 | 0.199 8 | ||
RACS+IBCF | 0.233 6 | 0.174 8 | 0.200 0 | ||
filmtrust | 72 | RACS | 0.591 9 | 0.522 3 | 0.554 9 |
RACS+kNN | 0.575 1 | 0.522 3 | 0.547 4 | ||
RACS+UBCF | 0.560 2 | 0.522 9 | 0.540 9 | ||
RACS+IBCF | 0.591 9 | 0.522 3 | 0.554 9 | ||
douban-s | 38 | RACS | 0.155 7 | 0.165 9 | 0.160 6 |
RACS+kNN | 0.155 4 | 0.166 0 | 0.160 5 | ||
RACS+UBCF | 0.155 3 | 0.166 0 | 0.160 5 | ||
RACS+IBCF | 0.155 7 | 0.165 9 | 0.160 6 |
表7 不同推荐算法对缺失用户进行推荐时的性能对比
Tab. 7 Performance comparison of different recommendation algorithms when recommending missing users
数据集 | 缺失 用户数 | 方法 | P | R | F1 |
---|---|---|---|---|---|
ml-10m-s1 | 6 | RACS | 0.233 6 | 0.174 8 | 0.200 0 |
RACS+kNN | 0.233 5 | 0.174 8 | 0.200 0 | ||
RACS+UBCF | 0.233 2 | 0.174 9 | 0.199 8 | ||
RACS+IBCF | 0.233 6 | 0.174 8 | 0.200 0 | ||
filmtrust | 72 | RACS | 0.591 9 | 0.522 3 | 0.554 9 |
RACS+kNN | 0.575 1 | 0.522 3 | 0.547 4 | ||
RACS+UBCF | 0.560 2 | 0.522 9 | 0.540 9 | ||
RACS+IBCF | 0.591 9 | 0.522 3 | 0.554 9 | ||
douban-s | 38 | RACS | 0.155 7 | 0.165 9 | 0.160 6 |
RACS+kNN | 0.155 4 | 0.166 0 | 0.160 5 | ||
RACS+UBCF | 0.155 3 | 0.166 0 | 0.160 5 | ||
RACS+IBCF | 0.155 7 | 0.165 9 | 0.160 6 |
数据集 | 指标 | RACS | GRHC | CSPR | kNN | IBCF | GreConD-kNN |
---|---|---|---|---|---|---|---|
movielens-100k | P | 0.244 1 | 0.209 1 | 0.208 9 | 0.197 7 | 0.225 7 | |
R | 0.282 5 | 0.207 9 | 0.268 7 | 0.388 7 | 0.196 4 | ||
F1 | 0.208 5 | 0.235 0 | 0.252 0 | 0.285 6 | 0.210 8 | ||
movielens-1m | P | 0.207 2 | 0.131 6 | 0.177 8 | 0.176 1 | 0.170 9 | |
R | 0.198 9 | 0.204 9 | 0.202 5 | 0.379 6 | 0.201 6 | ||
F1 | 0.203 0 | 0.160 2 | 0.189 3 | 0.261 5 | 0.185 0 | ||
ml-10m-s2 | P | 0.298 1 | 0.270 0 | 0.315 9 | 0.237 4 | 0.269 5 | |
R | 0.316 7 | 0.323 1 | 0.472 6 | 0.358 6 | 0.260 0 | ||
F1 | 0.333 9 | 0.291 5 | 0.319 5 | 0.316 1 | 0.264 7 | ||
netflix-s1 | P | 0.257 2 | 0.226 3 | 0.204 2 | 0.314 9 | 0.183 6 | |
R | 0.215 9 | 0.247 8 | 0.324 1 | 0.209 9 | 0.196 1 | ||
F1 | 0.284 7 | 0.234 7 | 0.236 6 | 0.250 6 | 0.189 6 | ||
filmtrust | P | 0.553 4 | 0.472 3 | 0.437 7 | 0.399 3 | 0.475 5 | |
R | 0.485 4 | 0.514 9 | 0.353 2 | 0.405 7 | 0.483 4 | ||
F1 | 0.525 0 | 0.478 8 | 0.473 2 | 0.374 9 | 0.437 8 | ||
jester-s1 | P | 0.703 3 | 0.653 6 | 0.869 9 | 0.184 8 | 0.445 4 | |
R | 0.580 5 | 0.557 6 | 0.657 3 | 0.353 9 | 0.413 7 | ||
F1 | 0.672 3 | 0.622 0 | 0.655 4 | 0.503 1 | 0.283 6 | 0.429 0 |
表8 不同推荐算法在6个常规数据集上的性能对比
Tab. 8 Performance comparison of different recommendation algorithms on six standard datasets
数据集 | 指标 | RACS | GRHC | CSPR | kNN | IBCF | GreConD-kNN |
---|---|---|---|---|---|---|---|
movielens-100k | P | 0.244 1 | 0.209 1 | 0.208 9 | 0.197 7 | 0.225 7 | |
R | 0.282 5 | 0.207 9 | 0.268 7 | 0.388 7 | 0.196 4 | ||
F1 | 0.208 5 | 0.235 0 | 0.252 0 | 0.285 6 | 0.210 8 | ||
movielens-1m | P | 0.207 2 | 0.131 6 | 0.177 8 | 0.176 1 | 0.170 9 | |
R | 0.198 9 | 0.204 9 | 0.202 5 | 0.379 6 | 0.201 6 | ||
F1 | 0.203 0 | 0.160 2 | 0.189 3 | 0.261 5 | 0.185 0 | ||
ml-10m-s2 | P | 0.298 1 | 0.270 0 | 0.315 9 | 0.237 4 | 0.269 5 | |
R | 0.316 7 | 0.323 1 | 0.472 6 | 0.358 6 | 0.260 0 | ||
F1 | 0.333 9 | 0.291 5 | 0.319 5 | 0.316 1 | 0.264 7 | ||
netflix-s1 | P | 0.257 2 | 0.226 3 | 0.204 2 | 0.314 9 | 0.183 6 | |
R | 0.215 9 | 0.247 8 | 0.324 1 | 0.209 9 | 0.196 1 | ||
F1 | 0.284 7 | 0.234 7 | 0.236 6 | 0.250 6 | 0.189 6 | ||
filmtrust | P | 0.553 4 | 0.472 3 | 0.437 7 | 0.399 3 | 0.475 5 | |
R | 0.485 4 | 0.514 9 | 0.353 2 | 0.405 7 | 0.483 4 | ||
F1 | 0.525 0 | 0.478 8 | 0.473 2 | 0.374 9 | 0.437 8 | ||
jester-s1 | P | 0.703 3 | 0.653 6 | 0.869 9 | 0.184 8 | 0.445 4 | |
R | 0.580 5 | 0.557 6 | 0.657 3 | 0.353 9 | 0.413 7 | ||
F1 | 0.672 3 | 0.622 0 | 0.655 4 | 0.503 1 | 0.283 6 | 0.429 0 |
算法 | ml-10m-s3 | netflix-s2 | jester-s2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | F1 | t/s | P | R | F1 | t/s | P | R | F1 | t/s | |
RACS | 0.248 8 | 0.239 5 | 0.244 0 | 20 | 0.267 0 | 0.306 2 | 0.285 3 | 10 | 0.772 2 | 0.596 6 | 0.673 1 | 27 |
GRHC | 0.198 5 | 0.210 4 | 0.204 2 | >3 600 | 0.210 6 | 0.302 7 | 0.248 4 | 600 | 0.577 9 | 0.452 6 | 0.507 6 | 420 |
CSPR | 0.182 8 | 0.209 0 | 0.195 0 | >3 600 | 0.222 8 | 0.317 9 | 0.262 0 | 120 | 0.671 8 | 0.620 5 | 0.645 2 | 480 |
GreConD-kNN | 0.180 5 | 0.142 4 | 0.159 2 | 600 | 0.247 8 | 0.188 2 | 0.213 9 | 90 | 0.612 2 | 0.354 8 | 0.449 3 | 780 |
表9 不同推荐算法在大规模数据集上的性能对比
Tab. 9 Performance comparison of different recommendation algorithms on large-scale datasets
算法 | ml-10m-s3 | netflix-s2 | jester-s2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | F1 | t/s | P | R | F1 | t/s | P | R | F1 | t/s | |
RACS | 0.248 8 | 0.239 5 | 0.244 0 | 20 | 0.267 0 | 0.306 2 | 0.285 3 | 10 | 0.772 2 | 0.596 6 | 0.673 1 | 27 |
GRHC | 0.198 5 | 0.210 4 | 0.204 2 | >3 600 | 0.210 6 | 0.302 7 | 0.248 4 | 600 | 0.577 9 | 0.452 6 | 0.507 6 | 420 |
CSPR | 0.182 8 | 0.209 0 | 0.195 0 | >3 600 | 0.222 8 | 0.317 9 | 0.262 0 | 120 | 0.671 8 | 0.620 5 | 0.645 2 | 480 |
GreConD-kNN | 0.180 5 | 0.142 4 | 0.159 2 | 600 | 0.247 8 | 0.188 2 | 0.213 9 | 90 | 0.612 2 | 0.354 8 | 0.449 3 | 780 |
1 | WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[C]// Proceedings of the 2009 International Conference on Formal Concept Analysis, LNCS 5548. Berlin: Springer, 2009: 314-339. |
2 | BÊLOHLÁVEK R. Fuzzy Galois connections[J]. Mathematical Logic Quarterly, 1999, 45(4): 497-504. |
3 | QI J J, WEI L, YAO Y Y. Three-way formal concept analysis[C]// Proceedings of the 2014 International Conference on Rough Sets and Knowledge Technology, LNCS 8818. Cham: Springer, 2014: 732-741. |
4 | CHOI V. Faster algorithms for constructing a concept (Galois) lattice[EB/OL]. [2025-02-10]. . |
5 | ZOU L G, ZHANG Z P, LONG J. A fast incremental algorithm for constructing concept lattices[J]. Expert Systems with Applications, 2015, 42(9): 4474-4481. |
6 | 李金海,魏玲,张卓,等.概念格理论与方法及其研究展望[J].模式识别与人工智能,2020,33(7):619-642. |
LI J H, WEI L, ZHANG Z, et al. Concept lattice theory and method and their research prospect[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(7): 619-642. | |
7 | 王志海,胡可云,胡学钢,等.概念格上规则提取的一般算法与渐进式算法[J].计算机学报,1999,22(1):66-70. |
WANG Z H, HU K Y, HU X G, et al. General and incremental algorithms of rule extraction based on concept lattice[J]. Chinese Journal of Computers, 1999, 22(1): 66-70. | |
8 | BALCÁZAR J L. Redundancy, deduction schemes, and minimum-size bases for association rules[J]. Logical Methods in Computer Science, 2010, 6(2): 1-33. |
9 | 李金海,吴伟志.形式概念分析的粒计算方法及其研究展望[J].山东大学学报(理学版),2017,52(7):1-12. |
LI J H, WU W Z. Granular computing approach for formal concept analysis and its research outlooks[J].Journal of Shandong University(Natural Science), 2017, 52(7):1-12. | |
10 | KUZNETSOV S O. Machine learning and formal concept analysis[C]// Proceedings of the 2004 International Conference on Formal Concept Analysis, LNCS 2961. Berlin: Springer, 2004: 287-312. |
11 | DE MAIO C, FENZA G, GALLO M, et al. Toward reliable machine learning with Congruity: a quality measure based on formal concept analysis[J]. Neural Computing and Applications, 2023, 35(2): 1899-1913. |
12 | PROKASHEVA O, ONISHCHENKO A, GUROV S. Classification methods based on formal concept analysis[C]// Proceedings of the 2013 Workshop on Formal Concept Analysis Meets Information Retrieval. Aachen: CEUR-WS.org, 2013: 95-104. |
13 | HESSE W, TILLEY T. Formal concept analysis used for software analysis and modelling[M]// Formal concept analysis: foundations and applications. Berlin: Springer, 2005: 288-303. |
14 | CARBONNEL J, BERTET K, HUCHARD M, et al. FCA for software product lines representation: mixing configuration and feature relationships in a unique canonical representation[J]. Discrete Applied Mathematics, 2016, 273: 43-64. |
15 | 谢志鹏,刘宗田.概念格与关联规则发现[J].计算机研究与发展,2000,37(12):1415-1421. |
XIE Z P, LIU Z T. Concept lattice and association rule discovery[J]. Journal of Computer Research and Development, 2000, 37(12): 1415-1421. | |
16 | FERRÉ S, HUCHARD M, KAYTOUE M, et al. Formal concept analysis: from knowledge discovery to knowledge processing[M]// A guided tour of artificial intelligence research: Volume Ⅱ: AI algorithms. Cham: Springer, 2020: 411-445. |
17 | ZHI H, LI J. Granule description based knowledge discovery from incomplete formal contexts via necessary attribute analysis[J]. Information Sciences, 2019, 485: 347-361. |
18 | DU BOUCHER-RYAN P, BRIDGE D. Collaborative recommending using formal concept analysis[C]// Proceedings of the 2005 International Conference on Innovative Techniques and Applications of Artificial Intelligence. London: Springer, 2005: 205-218. |
19 | ZOU C, ZHANG D, WAN J, et al. Using concept lattice for personalized recommendation system design[J]. IEEE Systems Journal, 2017, 11(1): 305-314. |
20 | 陈昊文,王黎明,张卓.基于概念邻域的Top-N推荐算法[J].小型微型计算机系统,2017,38(11):2553-2559. |
CHEN H W, WANG L M, ZHANG Z. Top-N recommendation algorithm based on conceptual neighborhood[J]. Journal of Chinese Computer Systems, 2017, 38(11): 2553-2559. | |
21 | 刘忠慧,邹璐,杨梅,等.启发式概念构造的组推荐方法[J].计算机科学与探索,2020,14(4):703-711. |
LIU Z H, ZOU L, YANG M, et al. Group recommendation with concept of heuristic construction[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 703-711. | |
22 | 张文修,魏玲,祁建军.概念格的属性约简理论与方法[J].中国科学E辑: 信息科学,2005,35(6):628-639. |
ZHANG W X, WEI L, QI J J. Theory and methodology of attribute reduction in concept lattice[J]. SCIENCE IN CHINA Series E Information Sciences, 2005, 35(6): 628-639. | |
23 | 曹丽,魏玲,祁建军.保持二元关系不变的概念约简[J]. 模式识别与人工智能,2018,31(6):516-524. |
CAO L, WEI L, QI J J. Concept reduction preserving binary relations[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(6): 516-524. | |
24 | KUZNETSOV S O. Learning of simple conceptual graphs from positive and negative examples[C]// Proceedings of the 1999 European Conference on Principles of Data Mining and Knowledge Discovery, LNCS 1704. Berlin: Springer, 1999: 384-391. |
25 | GODIN R, MISSAOUI R, ALAOUI H. Incremental concept formation algorithms based on Galois (concept) lattices[J]. Computational Intelligence, 1995, 11(2): 246-267. |
26 | FU H, NGUIFO E M. A parallel algorithm to generate formal concepts for large data[C]// Proceedings of the 2004 International Conference on Formal Concept Analysis, LNCS 2961. Berlin: Springer, 2004: 394-401. |
27 | 谢志鹏,刘宗田.概念格的快速渐进式构造算法[J].计算机学报,2002,25(5):490-496. |
XIE Z P, LIU Z T. A fast incremental algorithm for building concept lattice[J]. Chinese Journal of Computers, 2002, 25(5): 490-496. | |
28 | 智慧来,智东杰,刘宗田.概念格合并原理与算法[J].电子学报,2010,38(2):455-459. |
ZHI H L, ZHI D J, LIU Z T. Theory and algorithm of concept lattice union[J]. Acta Electronica Sinica, 2010, 38(2): 455-459. | |
29 | 蔡勇,陈红梅. MapReduce环境下基于概念分层的概念格并行构造算法[J]. 中国科学技术大学学报, 2018, 48(4): 275-283. |
CAI Y, CHEN H M. A parallel algorithm for constructing concept lattice based on hierarchical concept under MapReduce[J]. Journal of University of Science and Technology of China, 2018, 48(4): 275-283. | |
30 | 范敏,张洁,李金海. 基于弱概念相似度的组推荐方法[J]. 数据采集与处理, 2023, 38(2): 439-450. |
FAN M, ZHANG J, LI J H. Group recommendation method based on weaken-concept similarity[J]. Journal of Data Acquisition and Processing, 2023, 38(2): 439-450. | |
31 | 范敏,郭瑞欣,李金海. 网络决策形式背景下基于因果力的邻域推荐算法[J]. 模式识别与人工智能, 2022, 35(11): 977-988. |
FAN M, GUO R X, LI J H. Neighborhood recommendation algorithm based on causality force under network formal decision context[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(11): 977-988. | |
32 | 刘忠慧,陈建宇,宋国杰,等.基于模拟退火法的概念集构造算法[J].模式识别与人工智能,2021,34(8):723-732. |
LIU Z H, CHEN J Y, SONG G J, et al. Construction algorithm of concept set based on simulated annealing algorithm[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(8): 723-732. | |
33 | 刘忠慧,姜帅,闵帆.模糊概念集的启发式构造方法及其推荐应用[J].山东大学学报(理学版), 2024, 59(3): 14-26. |
LIU Z H, JIANG S, MIN F. Heuristic construction method of fuzzy concept set and its recommended application[J]. Journal of Shandong University(Natural Science), 2024, 59(3): 14-26. | |
34 | GANTER B, WILLE R. Formal concept analysis: mathematical foundations[M]. Berlin: Springer, 1999: 294. |
35 | 于洪,王国胤,姚一豫. 决策粗糙集理论研究现状与展望[J]. 计算机学报, 2015, 38(8): 1628-1639. |
YU H, WANG G Y, YAO Y Y. Current research and future perspectives on decision-theoretic rough sets[J]. Chinese Journal of Computers, 2015, 38(8): 1628-1639. | |
36 | 危前进,魏继鹏,古天龙,等. 粗糙集多目标并行属性约简算法[J]. 软件学报, 2022, 33(7): 2599-2617. |
WEI Q J, WEI J P, GU T L, et al. Multi-objective parallel attribute reduction algorithm in rough set[J]. Journal of Software, 2022, 33(7): 2599-2617. | |
37 | WANG X, MA J M. A novel approach to attribute reduction in concept lattices[C]// Proceedings of the 2006 International Conference on Rough Sets and Knowledge Technology, LNCS 4062. Berlin: Springer, 2006: 522-529. |
38 | LIU Z H, ZHAO Q, ZOU L, et al. A heuristic concept construction approach to collaborative recommendation[J]. International Journal of Approximate Reasoning, 2022, 146: 119-132. |
39 | HARPER F M, KONSTAN J A. The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5(4): No.19. |
40 | GUO G B, ZHANG J, YORKE-SMITH N. A novel Bayesian similarity measure for recommender systems[C]// Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2013: 2619-2625. |
41 | GOLDBERG K, ROEDER T, GUPTA D, et al. Eigentaste: a constant time collaborative filtering algorithm[J]. Information Retrieval, 2001, 4(2): 133-151. |
42 | ZHU F, WANG Y, CHEN C C, et al. A graphical and attentional framework for dual-target cross-domain recommendation[C]// Proceedings of the 29th International Conference on International Joint Conferences on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2020: 3001-3008. |
43 | BELOHLAVEK R, VYCHODIL V. Discovery of optimal factors in binary data via a novel method of matrix decomposition[J]. Journal of Computer and System Sciences, 2010, 76(1): 3-20. |
[1] | 党伟超, 温鑫瑜, 高改梅, 刘春霞. 基于多视图多尺度对比学习的图协同过滤[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1061-1068. |
[2] | 田仁杰, 景明利, 焦龙, 王飞. 基于混合负采样的图对比学习推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1053-1060. |
[3] | 余肖生, 王智鑫. 基于多层次图对比学习的序列推荐模型[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 106-114. |
[4] | 唐廷杰, 黄佳进, 秦进. 基于图辅助学习的会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2711-2718. |
[5] | 唐廷杰, 黄佳进, 秦进, 陆辉. 基于图共现增强多层感知机的会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2357-2364. |
[6] | 汪炅, 唐韬韬, 贾彩燕. 无负采样的正样本增强图对比学习推荐方法PAGCL[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1485-1492. |
[7] | 荆智文, 张屿佳, 孙伯廷, 郭浩. 二阶段孪生图卷积神经网络推荐算法[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 469-476. |
[8] | 曾蠡, 杨婧如, 黄罡, 景翔, 罗超然. 超图应用方法综述:问题、进展与挑战[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3315-3326. |
[9] | 周北京, 王海荣, 王怡梦, 张丽丝, 马赫. 图谱嵌入传播的推荐方法[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3252-3259. |
[10] | 刘源, 董永权, 贾瑞, 杨昊霖. 面向个性化课程推荐的分层分期注意力网络模型[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2358-2363. |
[11] | 叶坤佩, 熊熙, 丁哲. 基于领域融合和时间权重的招工推荐模型[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2133-2139. |
[12] | 孙浩, 曹健, 李海生, 毛典辉. 基于改进胶囊网络的会话型推荐模型[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1043-1049. |
[13] | 叶青, 史昕, 孙梦薇, 朱健. 基于形式概念分析的交通监测传感网络贪婪性同步拓扑算法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 869-875. |
[14] | 孙轩宇, 史艳翠. 融合项目影响力的图神经网络会话推荐模型[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3689-3696. |
[15] | 魏楚元, 王梦珂, 户传豪, 张桄齐. 增强推荐系统可解释性的深度评论注意力神经网络模型[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3443-3448. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||