1 |
BORNMANN L, MUTZ R. Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references[J]. Journal of The Association for Information Science and Technology, 2015, 66(11): 2215-2222.
|
2 |
TEUFEL S, SIDDHARTHAN A, TIDHAR D. Automatic classification of citation function[C]// Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2006: 103-110.
|
3 |
XING X, FAN X, WAN X. Automatic generation of citation texts in scholarly papers: a pilot study[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6181-6190.
|
4 |
LUHN H P. The automatic creation of literature abstracts[J]. IBM Journal of Research and Development, 1958, 2(2): 159-165.
|
5 |
EDMUNDSON H P. New methods in automatic extracting[J]. Journal of the ACM, 1969, 16(2): 264-285.
|
6 |
QAZVINIAN V, RADEV D R. Scientific paper summarization using citation summary networks[C]// Proceedings of the 22nd International Conference on Computational Linguistics. [S.l.]: Coling 2008 Organizing Committee, 2008: 689-696.
|
7 |
MEI Q, ZHAI C. Generating impact-based summaries for scientific literature[C]// Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2008: 816-824.
|
8 |
McNEE S M, ALBERT I, COSLEY D, et al. On the recommending of citations for research papers[C]// Proceedings of the 2002 ACM Conference on Computer Supported Cooperative Work. New York: ACM, 2002: 116-125.
|
9 |
BHAGAVATULA C, FELDMAN S, POWER R, et al. Content-based citation recommendation[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 238-251.
|
10 |
MEDIĆ Z, ŠNAJDER J. Improved local citation recommendation based on context enhanced with global information[C]// Proceedings of the 1st Workshop on Scholarly Document Processing. Stroudsburg: ACL, 2020: 97-103.
|
11 |
GU N, GAO Y, HAHNLOSER R H R. Local citation recommendation with hierarchical-attention text encoder and SciBERT-based reranking [C]// Proceedings of the 2022 European Conference on Information Retrieval, LNCS 13185. Cham: Springer, 2022: 274-288.
|
12 |
GE Y, DINH L, LIU X, et al. BACO: a background knowledge-and content-based framework for citing sentence generation[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 1466-1478.
|
13 |
BELTAGY I, LO K, COHAN A. SciBERT: a pretrained language model for scientific text [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 3615-3620.
|
14 |
COHAN A, GOHARIAN N. Scientific article summarization using citation-context and article’s discourse structure[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 390-400.
|
15 |
YASUNAGA M, KASAI J, ZHANG R, et al. ScisummNet: a large annotated corpus and content-impact models for scientific paper summarization with citation networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 7386-7393.
|
16 |
JURGENS D, KUMAR S, HOOVER R, et al. Measuring the evolution of a scientific field through citation frames[J]. Transactions of the Association for Computational Linguistics, 2018, 6: 391-406.
|
17 |
COHAN A, AMMAR W, VAN ZUYLEN M, et al. Structural scaffolds for citation intent classification in scientific publications[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long and Short Papers). Stroudsburg: ACL, 2019: 3586-3596.
|
18 |
王心玥,赵丹群. 引文情感识别研究进展及评述[J]. 情报理论与实践, 2024,47(1): 173-181, 189.
|
|
WANG X Y, ZHAO D Q. Review on progress of citation sentiment identification[J]. Information Studies: Theory and Application, 2024, 47(1): 173-181, 189.
|
19 |
廖君华,刘自强,白如江,等. 基于引文内容分析的引用情感识别研究[J]. 图书情报工作, 2018, 62(15): 112-121.
|
|
LIAO J H, LIU Z Q, BAI R J, et al. Citation sentiment recognition method based on citation content analysis[J]. Library and Information Service, 2018, 62(15): 112-121.
|
20 |
SEE A, LIU P J, MANNING C D. Get to the point: summarization with pointer-generator networks[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 1073-1083.
|
21 |
LUU K, WU X, KONCEL-KEDZIORSKI R, et al. Explaining relationships between scientific documents [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 2130-2144.
|
22 |
RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners [EB/OL]. [2024-02-16]..
|
23 |
CHEN J, CAI C, JIANG X, et al. Comparative graph-based summarization of scientific papers guided by comparative citations[C]// Proceedings of the 29th International Conference on Computational Linguistics. Stroudsburg: ACL, 2022: 5978-5988.
|
24 |
GU N, HAHNLOSER R H R. Controllable citation text generation[EB/OL]. [2024-02-16]..
|
25 |
LEWIS M, LIU Y, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 7871-7880.
|
26 |
ZHAO H, LUO Z, FENG C, et al. A context-based framework for modeling the role and function of on-line resource citations in scientific literature[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5206-5215.
|
27 |
KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2024-02-16]..
|
28 |
LIN C Y. ROUGE: a package for automatic evaluation of summaries[C]// Proceedings of the ACL-04 Workshop: Text Summarization Branches Out. Stroudsburg: ACL, 2004: 74-81.
|
29 |
PARIKH A P, TÄCKSTRÖM O, DAS D, et al. A decomposable attention model for natural language inference[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 2249-2255.
|
30 |
CHEN Q, ZHU X, LING Z H, et al. Enhanced LSTM for natural language inference[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 1657-1668.
|
31 |
JEONG C, JANG S, PARK E, et al. A context-aware citation recommendation model with BERT and graph convolutional networks [J]. Scientometrics, 2020, 124(3): 1907-1922.
|