[1] |
LEE D H. Pseudo-Label: the simple and efficient semi-supervised learning method for deep neural networks [EB/OL]. [2024-06-12]. .
|
[2] |
ZHANG P, ZHANG B, ZHANG T, et al. Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12409-12419.
|
[3] |
HOYER L, DAI D, WANG H, et al. MIC: masked image consistency for context-enhanced domain adaptation [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 11721-11732.
|
[4] |
MANCINI M, PORZI L, BULO S R, et al. Boosting domain adaptation by discovering latent domains [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3771-3780.
|
[5] |
CARLUCCI F M, PORZI L, CAPUTO B, et al. AutoDIAL: automatic domain alignment layers [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5067-5075.
|
[6] |
GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks [J]. Journal of Machine Learning Research, 2016, 17: 1-35.
|
[7] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2014: 2672-2680.
|
[8] |
WANG H, SHEN T, ZHANG W, et al. Classes matter: a fine-grained adversarial approach to cross-domain semantic segmentation [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12359. Cham: Springer, 2020: 642-659.
|
[9] |
GONG R, LI W, CHEN Y, et al. DLOW: domain flow for adaptation and generalization [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2472-2481.
|
[10] |
TSAI Y H, HUNG W C, SCHULTER S, et al. Learning to adapt structured output space for semantic segmentation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7472-7481.
|
[11] |
CHEN Y, LI W, VAN GOOL L. ROAD: reality oriented adaptation for semantic segmentation of urban scenes [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7892-7901.
|
[12] |
LUO Y, ZHENG L, GUAN T, et al. Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2502-2511.
|
[13] |
DU L, TAN J, YANG H, et al. SSF-DAN: separated semantic feature based domain adaptation network for semantic segmentation [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 982-991.
|
[14] |
WANG Z, YU M, WEI Y, et al. Differential treatment for stuff and things: a simple unsupervised domain adaptation method for semantic segmentation [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12632-12641.
|
[15] |
HOFFMAN J, WANG D, YU F, et al. FCNs in the wild: pixel-level adversarial and constraint-based adaptation [EB/OL]. [2024-06-12]. .
|
[16] |
SANKARANARAYANAN S, BALAJI Y, JAIN A, et al. Learning from synthetic data: addressing domain shift for semantic segmentation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3752-3761.
|
[17] |
ZOU Y, YU Z, VIJAYA KUMAR B V K, et al. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11207. Cham: Springer, 2018: 297-313.
|
[18] |
VU T H, JAIN H, BUCHER M, et al. ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2512-2521.
|
[19] |
YANG Y, SOATTO S. FDA: Fourier domain adaptation for semantic segmentation [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4084-4094.
|
[20] |
SAKARIDIS C, DAI D, HECKER S, et al. Model adaptation with synthetic and real data for semantic dense foggy scene understanding [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11217. Cham: Springer, 2018: 707-724.
|
[21] |
ZOU Y, YU Z, LIU X, et al. Confidence regularized self-training [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 5981-5990.
|
[22] |
ARASLANOV N, ROTH S. Self-supervised augmentation consistency for adapting semantic segmentation [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 15379-15389.
|
[23] |
MELAS-KYRIAZI L, MANRAI A K. PixMatch: unsupervised domain adaptation via pixelwise consistency training [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12430-12440.
|
[24] |
SOHN K, BERTHELOT D, LI C L, et al. FixMatch: simplifying semi-supervised learning with consistency and confidence [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc, 2020: 596-608.
|
[25] |
LI Y, YUAN L, VASCONCELOS N. Bidirectional learning for domain adaptation of semantic segmentation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6929-6938.
|
[26] |
PIZZATI F, DE CHARETTE R, ZACCARIA M, et al. Domain bridge for unpaired image-to-image translation and unsupervised domain adaptation [C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2979-2987.
|
[27] |
HUO X, XIE L, HU H, et al. Domain-agnostic prior for transfer semantic segmentation [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 7065-7075.
|
[28] |
HOYER L, DAI D, VAN GOOL L. DAFormer: improving network architectures and training strategies for domain-adaptive semantic segmentation [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9914-9925.
|