[1] |
SANGEETHA Y, MAJJI S, SRINAGESH A, et al. Authentication of symmetric cryptosystem using anti-aging controller-based true random number generator [J]. Applied Nanoscience, 2023, 13(2): 1055-1064.
|
[2] |
ALEXAN W, ALEXAN N, GABR M. Multiple-layer image encryption utilizing fractional-order chen hyperchaotic map and cryptographically secure PRNGs [J]. Fractal and Fractional, 2023, 7(4): No.287.
|
[3] |
刁进,谢飞龙,胡汉平. 基于改进混沌系统的伪随机数发生器[J]. 计算机应用, 2021, 41(S2):151-158.
|
|
DIAO J, XIE F L, HU H P. Pseudo random number generator based on improved chaotic system [J]. Journal of Computer Applications, 2021, 41(S2): 151-158.
|
[4] |
陈东昱,陈华,范丽敏,等. 基于深度学习的随机性检验策略研究[J]. 通信学报, 2023, 44(6):23-33.
|
|
CHEN D Y, CHEN H, FAN L M, et al. Research on test strategy for randomness based on deep learning [J]. Journal on Communications, 2023, 44(6): 23-33.
|
[5] |
JEONG Y S, OH K J, CHO C K, et al. Pseudo-random number generation using LSTMs [J]. The Journal of Supercomputing, 2020, 76(10): 8324-8342.
|
[6] |
PASQUALINI L, PARTON M. Pseudo random number generation: a reinforcement learning approach [J]. Procedia Computer Science, 2020, 170: 1122-1127.
|
[7] |
PASQUALINI L, PARTON M. Pseudo random number generation through reinforcement learning and recurrent neural networks [J]. Algorithms, 2020, 13(11): No.307.
|
[8] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [J]. Communications of the ACM, 2020, 63(11): 139-144.
|
[9] |
DE BERNARDI M, KHOUZANI M H R, MALACARIA P. Pseudo-random number generation using generative adversarial networks[C]// Proceedings of the 2018 Joint European Conference on Machine Learning and Knowledge Discovery in Databases Workshops, LNCS 11329. Cham: Springer, 2019: 191-200.
|
[10] |
OAK R, RAHALKAR C, GUJAR D. Poster: using generative adversarial networks for secure pseudorandom number generation[C]// Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 2597-2599.
|
[11] |
KIM H, KWON Y, SIM M, et al. Generative adversarial networks-based pseudo-random number generator for embedded processors [C]// Proceedings of the 2020 Information Security and Cryptology, LNCS 12593. Cham: Springer, 2021: 215-234.
|
[12] |
MAN Z, LI J, DI X, et al. A novel image encryption algorithm based on least squares generative adversarial network random number generator [J]. Multimedia Tools and Applications, 2021, 80(18): 27445-27469.
|
[13] |
李锦青,刘泽飞,满振龙. 基于生成对抗网络的密钥生成方法及其在微光图像加密中的应用[J]. 兵工学报, 2022, 43(2):337-344.
|
|
LI J Q, LIU Z F, MAN Z L. Key generation method based on generative adversarial network and its application in low-light-level image encryption [J]. Acta Armamentarii, 2022, 43(2): 337-344.
|
[14] |
OKADA K, ENDO K, YASUOKA K, et al. Learned pseudo-random number generator: WGAN-GP for generating statistically robust random numbers [J]. PLoS ONE, 2023, 18(6): No.e0287025.
|
[15] |
WU X, HAN Y, ZHU S, et al. Learned pseudo-random number generator based on generative adversarial networks [C]// Proceedings of the 2023 International Conference on Frontiers in Cyber Security, CCIS 1992. Singapore: Springer, 2024: 517-530.
|
[16] |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 5769-5779.
|
[17] |
BROPHY E, WANG Z, SHE Q, et al. Generative adversarial networks in time series: a systematic literature review [J]. ACM Computing Surveys, 2023, 55(10): No.199.
|
[18] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
[19] |
MEHTA S, RASTEGARI M. Separable self-attention for mobile vision Transformers [R/OL]. [2024-04-05]. .
|
[20] |
KONG F, LI J, JIANG B, et al. Integrated generative model for industrial anomaly detection via bidirectional LSTM and attention mechanism [J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 541-550.
|
[21] |
LU X Q, TIAN J, LIAO Q, et al. CNN-LSTM based incremental attention mechanism enabled phase-space reconstruction for chaotic time series prediction [J]. Journal of Electronic Science and Technology, 2024, 22(2): No.100256.
|
[22] |
KOU Y, CHEN Z, GU Q. Implicit bias of gradient descent for two-layer ReLU and Leaky ReLU networks on nearly-orthogonal data[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 30167-30221.
|
[23] |
HUANG L, QIN J, ZHOU Y, et al. Normalization techniques in training DNNs: methodology, analysis and application [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10173-10196.
|
[24] |
BARKER E, KELSEY J. Recommendation for random number generation using deterministic random bit generators: NIST SP 800-90RevA.1 [R/OL]. [2024-07-24]. .
|
[25] |
RUKHIN A, SOTO J, NECHVATAL J, et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications: NIST SP 800-22 Rev 1a [R/OL]. [2024-07-28]..
|