1 |
金大海,宫云战,王雅文,等. 软件代码测试技术 [J]. 信息通信技术, 2015, 9(3):33-39.
|
|
JIN D H, GONG Y Z, WAND Y W, et al. Testing technologies for software code [J]. Information and Communication Technologies, 2015, 9(3): 33-39.
|
2 |
钱月琴. 基于数据驱动的J2EE单元测试脚本自动生成技术[J]. 河北软件职业技术学院学报, 2009, 11(3):55-57.
|
|
QIAN Y Q. Automatic generation technology of J2EE unit test scripts based on data-driven [J]. Journal of Hebei Software Institute, 2009, 11(3):55-57.
|
3 |
刘会颖. 基于智能优化算法的测试数据自动生成技术研究[D]. 廊坊:北华航天工业学院, 2023.
|
|
LIU H Y. Research on automatic test data generation technology based on intelligent optimization algorithm [D]. Langfang: North China Institute of Aerospace Industry, 2023.
|
4 |
LI Y F, DAS P K, DOWE D L. Two decades of Web application testing — a survey of recent advances [J]. Information Systems, 2014, 43: 20-54.
|
5 |
XU D, LI H, LAM C P. A systematic approach to automatically generate test scenarios from UML activity diagrams [C]// Proceedings of the 3rd International Conference on IASTED International Conference: Advances in Computer Science and Technology. Anaheim, CA: ACTA Press, 2007: 134-139.
|
6 |
EIBEN A E, SMITH J. From evolutionary computation to the evolution of things [J]. Nature, 2015, 521(7553): 476-482.
|
7 |
CHEN J, WANG G, HAO D, et al. Coverage prediction for accelerating compiler testing [J]. IEEE Transactions on Software Engineering, 2021, 47(2): 261-278.
|
8 |
BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020:1877-1901.
|
9 |
SIDDIQA M L, SANTOS J C S, TANVIRB R H, et al. Using large language models to generate JUnit tests: an empirical study [C]// Proceedings of the 28th International Conference on Evaluation and Assessment in Software Engineering. New York: ACM, 2024: 313-322.
|
10 |
STEENHOEK B, TUFANO M, SUBDARESAN N, et al. Reinforcement learning from automatic feedback for high-quality unit test generation [EB/OL]. [2024-01-10]. .
|
11 |
HU E J, SHEN Y, WALLIS P, et al. LoRA: low-rank adaptation of large language models [EB/OL]. [2024-05-22]. .
|
12 |
HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP [C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 2790-2799.
|
13 |
周端阳,王猛. 基于三层体系结构的单元测试框架研究与实现[J]. 计算机应用, 2010, 30(8):2189-2192.
|
|
ZHOU R Y, WANG M. Research and implementation of unit testing framework based on three-layer architecture [J]. Journal of Computer Applications, 2010, 30(8):2189-2192.
|
14 |
PǍSǍREANU C S, MEHLITZ P C, BUSHNELL D H, et al. Combining unit-level symbolic execution and system-level concrete execution for testing NASA software [C]// Proceedings of the 2008 International Symposium on Software Testing and Analysis. New York: ACM, 2008: 15-26.
|
15 |
XIE T, MARINOV D, SCHULTE W, et al. Symstra: a framework for generating object-oriented unit tests using symbolic execution[C]// Proceedings of the 2005 International Conference on Tools and Algorithms for the Construction and Analysis of Systems, LNCS 3440. Berlin: Springer, 2005: 365-381.
|
16 |
FRASER G, ARCURI A. EvoSuite: automatic test suite generation for object-oriented software [C]// Proceedings of the 19th ACM SIGSOFT Symposium on Foundations of Software Engineering. New York: ACM, 2011: 416-419.
|
17 |
ENOIU E P, ČAUŠEVIĆ A, OSTRAND T J, et al. Automated test generation using model checking: an industrial evaluation [J]. International Journal on Software Tools for Technology Transfer, 2016, 18(3): 335-353.
|
18 |
TUFANO M, DRAIN D, SVYATKOVSKIY A, et al. Unit test case generation with Transformers and focal context [EB/OL]. [2024-05-08]. .
|
19 |
LEWIS M, LIU Y, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 7871-7880.
|
20 |
GUO D, ZHU Q, YANG D, et al. DeepSeek-Coder: when the large language model meets programming — the rise of code intelligence [EB/OL]. [2024-07-11]. .
|
21 |
YUAN Z, LOU Y, LIU M, et al. No more manual tests? evaluating and improving ChatGPT for unit test generation [EB/OL]. [2024-09-26]. .
|
22 |
LEMIEUX C, INALA J P, LAHIRI S K, et al. CodaMosa: escaping coverage plateaus in test generation with pre-trained large language models [C]// Proceedings of the IEEE/ACM 45th International Conference on Software Engineering. Piscataway: IEEE, 2023: 919-931.
|
23 |
CHEN M, TWOREK J, JUN H, et al. Evaluating large language models trained on code [EB/OL]. [2024-08-17]. .
|
24 |
LI T O, ZONG W, WANG Y, et al. Nuances are the key: unlocking ChatGPT to find failure-inducing tests with differential prompting [C]// Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2023: 14-26.
|
25 |
LESTER B, AL-RFOU R, CONSTANT N. The power of scale for parameter-efficient prompt tuning [C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 3045-3059.
|
26 |
LI X L, LIANG P. Prefix-tuning: optimizing continuous prompts for generation [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 4582-4597.
|
27 |
TOUVRON H, MARTIN L, STONE K, et al. LLaMA 2: open foundation and fine-tuned chat models [EB/OL]. [2024-11-05]..
|
28 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
29 |
HUSAIN H, WU H H, GAZIT T, et al. CodeSearchNet Challenge: evaluating the state of semantic code search [EB/OL]. [2024-08-05]. .
|
30 |
RASLEY J, RAJBHANDARI S, RUWASE O, et al. DeepSpeed: system optimizations enable training deep learning models with over 100 billion parameters [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 3505-3506.
|
31 |
ROZIÈRE B, GEHRING J, GLOECKLE F, et al. Code Llama: open foundation models for code [EB/OL]. [2024-10-30]. .
|
32 |
FRASER G, ARCURI A. A large-scale evaluation of automated unit test generation using EvoSuite [J]. ACM Transactions on Software Engineering and Methodology, 2015, 24(2): No.8.
|